I have column in Pandas dataframe which has values from A-Z. I want to replace the letter value into numeric value. i.e A = 1, B = 2 etc
I tried below and it works but is there an efficient way to replace the value to numeric?
key = {'A': 1, 'B': 2, 'C': 3, 'D': 4, 'E': 5, 'F': 6, 'G': 7, 'H': 8, 'I': 9,
'J': 10, 'K': 11, 'L': 12, 'M': 13, 'N': 14, 'O': 15, 'P': 16, 'Q': 17,
'R': 18, 'S': 19, 'T': 20, 'U': 21, 'V': 22, 'W': 23, 'X': 24, 'Y': 25,
'Z': 26}
df.replace({'letter_column': key})
CodePudding user response:
You can use dict comprehension:
df = df.replace({'letter_column': {chr(i 64): i for i in range(1, 27)}})
CodePudding user response:
you can use ord() which maps ASCII characters:
df = pd.DataFrame(['A','B','C'], columns = ['letter'])
df['letter'].apply(lambda x:ord(x)-64)
CodePudding user response:
You can do
df[:] = df.to_numpy().astype('<U1').view(np.uint32)-64