I have a very wide dataset which consists of hundreds of date-value column pairs - however the heading of the values column contains the reference of the site from which the data is taken. I'd like to take this header as a new "site_name" column before pivoting this data to a long format.
The data for each site is the same 2-column format, so I'd like to be able to apply a solution across the whole dataset at once.
My code below illustrates the problem on a single date-value pair
Note: I've used asterisks to mean I'm describing the column names, rather than quoting them
import pandas as pd
current = pd.DataFrame({"*unnamed_date_column*" : ["2021-10-21", "2021-10-22", "2021-10-23"],
"*unique_site_name*" : [1.1, 1.2, 1.3]})
desired = pd.DataFrame({"date" : ["2021-10-21", "2021-10-22", "2021-10-23"],
"values" : [1.1, 1.2, 1.3],
"site" : ["unique_site_name", "unique_site_name", "unique_site_name"]})
CodePudding user response:
Difficult to know how this will generalize without knowing more examples, but you could try:
desired = (current
.assign(site=current.columns[-1]) # arbitrarily chose to index from end
.rename(columns=dict(zip(current.columns, ['date', 'values'])))
)
output:
date values site
0 2021-10-21 1.1 *unique_site_name*
1 2021-10-22 1.2 *unique_site_name*
2 2021-10-23 1.3 *unique_site_name*
CodePudding user response:
you can use melt :
desired = current.melt(id_vars=["*unnamed_date_column*"],var_name=['site']).rename(columns ={"*unnamed_date_column*": "date"})
output:
date site value
0 2021-10-21 *unique_site_name* 1.1
1 2021-10-22 *unique_site_name* 1.2
2 2021-10-23 *unique_site_name* 1.3