Is there an R function to select N random columns from the dataframe? I'am trying to check the time complexity of Sparsebn package for structure learning of Bayesian Networks
I've tried this, but the algorithm selects not only N columns, but also N rows. How to fix that?
library(sparsebn)
library(igraph)
library(graph)
df <- read.csv("data/arth150.csv", header = TRUE, sep = ",", check.names = FALSE)
df <- as.data.frame(unclass(df), stringsAsFactors = TRUE)
experiment_range <- list(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 106)
timelist <- list()
for (i in experiment_range) {
rand_df <- df[sample(ncol(df), size=i), ]
start_time <- Sys.time()
dat <- sparsebnData(rand_df, type = 'c')
dags <- estimate.dag(data = dat)
end_time <- Sys.time()
ctime <- end_time - start_time
otime <- list(ctime)
timelist <- append(timelist, otime)
}
CodePudding user response:
If df
is a dataframe, you can sample i
columns randomly by doing this:
df[,sample(1:ncol(df),i)]
CodePudding user response:
Or using dplyr
:
dplyr::select(df, sample(seq_len(ncol(df)), size = i))
In a pipe:
df %>% dplyr::select(sample(seq_len(ncol(.)), size = i))