Say I have a Pandas multi-index data frame with 3 indices:
import pandas as pd
import numpy as np
arrays = [['UK', 'UK', 'US', 'FR'], ['Firm1', 'Firm1', 'Firm2', 'Firm1'], ['Andy', 'Peter', 'Peter', 'Andy']]
idx = pd.MultiIndex.from_arrays(arrays, names = ('Country', 'Firm', 'Responsible'))
df_3idx = pd.DataFrame(np.random.randn(4,3), index = idx)
df_3idx
0 1 2
Country Firm Responsible
UK Firm1 Andy 0.237655 2.049636 0.480805
Peter 1.135344 0.745616 -0.577377
US Firm2 Peter 0.034786 -0.278936 0.877142
FR Firm1 Andy 0.048224 1.763329 -1.597279
I have furthermore another pd.dataframe consisting of unique combinations of multi-index-level 1 and 2 from the above data:
arrays = [['UK', 'US', 'FR'], ['Firm1', 'Firm2', 'Firm1']]
idx = pd.MultiIndex.from_arrays(arrays, names = ('Country', 'Firm'))
df_2idx = pd.DataFrame(np.random.randn(3,1), index = idx)
df_2idx
0
Country Firm
UK Firm1 -0.103828
US Firm2 0.096192
FR Firm1 -0.686631
I want to subtract the values from df_3idx
by the corresponding value in df_2idx
, so, for instance, I want to subtract from every value of the first two rows the value -0.103828, as index 1 and 2 from both dataframes match.
Does anybody know how to do this? I figured I could simply unstack the first dataframe and then subtract, but I am getting an error message.
df_3idx.unstack('Responsible').sub(df_2idx, axis=0)
ValueError: cannot join with no overlapping index names
Unstacking might anyway not be a preferable solution as my data is very big and unstacking might take a lot of time.
I would appreciate any help. Many thanks in advance!
CodePudding user response:
related question but not focused on MultiIndex
However, the answer doesn't really care. The sub
method will align on the matching index levels.
pd.DataFrame.sub
with parameter axis=0
df_3idx.sub(df_2idx[0], axis=0)
0 1 2
Country Firm Responsible
FR Firm1 Andy 0.027800 3.316148 0.804833
UK Firm1 Andy -2.009797 -1.830799 -0.417737
Peter -1.174544 0.644006 -1.150073
US Firm2 Peter -2.211121 -3.825443 -4.391965