I have a CNN output a scalar, this output is concatenated with the output of an MLP and then fed to another dense layer. I get a Graph Disconnected error
Please advise as to how to fix this. Thanks in advance.
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, Dense, Flatten, concatenate, Input
import tensorflow as tf
tf.keras.backend.clear_session()
#----custom function
def custom_loss(ytrue, ypred):
loss = tf.math.log(1. ytrue) - tf.math.log(1. ypred)
loss = tf.math.square(loss)
loss = tf.math.reduce_mean(loss)
return loss
#------------------
cnnin = Input(shape=(10, 10, 1))
x = Conv2D(8, 4)(cnnin)
x = Conv2D(16, 4)(x)
x = Conv2D(32, 2)(x)
x = Conv2D(64, 2)(x)
x = Flatten()(x)
x = Dense(4)(x)
x = Dense(4, activation="relu")(x)
cnnout = Dense(1, activation="linear")(x)
cnnmodel= Model(cnnin, cnnout, name="cnn_model")
yt = Input(shape=(2, )) #---dummy input
#---mlp start
mlpin = Input(shape=(2, ), name="mlp_input")
z = Dense(4, activation="sigmoid")(mlpin)
z = Dense(4, activation = "softmax")(z)
mlpout = Dense(1, activation="linear")(z)
mlpmodel = Model(mlpin, mlpout, name="mlp_model")
#----concatenate
combinedout = concatenate([mlpmodel.output, cnnmodel.output ])
x = Dense(4, activation="sigmoid")(combinedout)
finalout = Dense(2, activation="linear")(x)
model = Model( [mlpin, cnnin], finalout)
model.add_loss(custom_loss(yt, finalout))
model.compile(optimizer='adam', learning_rate=1e-3, initialization="glorotnorm",
loss=None)
Graph disconnected: cannot obtain value for tensor Tensor("input_8:0", shape=(None, 2), dtype=float32) at layer "input_8". The following previous layers were accessed without issue: ['input_7', 'conv2d_12', 'conv2d_13', 'conv2d_14', 'conv2d_15', 'flatten_3', 'mlp_input', 'dense_24', 'dense_27', 'dense_25', 'dense_28', 'dense_29', 'dense_26', 'concatenate_3', 'dense_30', 'dense_31']
CodePudding user response:
You can customize what happens in Model.fit based on https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit
- We create a new class that subclasses keras.Model.
- We just override the method train_step(self, data).
- We return a dictionary mapping metric names (including the loss) to their current value.
For example with your models:
loss_tracker = tf.keras.metrics.Mean(name = "custom_loss")
class TestModel(tf.keras.Model):
def __init__(self, model1):
super(TestModel, self).__init__()
self.model1 = model1
def compile(self, optimizer):
super(TestModel, self).compile()
self.optimizer = optimizer
def train_step(self, data):
x, y = data
with tf.GradientTape() as tape:
ypred = self.model1([x], training = True)
loss_value = custom_loss(y, ypred)
# Compute gradients
trainable_vars = self.trainable_variables
gradients = tape.gradient(loss_value, trainable_vars)
# Update weights
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
loss_tracker.update_state(loss_value)
return {"loss": loss_tracker.result()}
import numpy as np
x = np.random.rand(6, 10,10,1)
x2 = np.random.rand(6,2)
y = tf.ones((6,2))
model = Model( [mlpin, cnnin], finalout)
trainable_model = TestModel(model)
trainable_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate = 0.0001))
trainable_model.fit(x=(x2, x), y = y, epochs=5)
Gives the following output:
Epoch 1/5
1/1 [==============================] - 0s 382ms/step - loss: 0.2641
Epoch 2/5
1/1 [==============================] - 0s 4ms/step - loss: 0.2640
Epoch 3/5
1/1 [==============================] - 0s 6ms/step - loss: 0.2638
Epoch 4/5
1/1 [==============================] - 0s 7ms/step - loss: 0.2635
Epoch 5/5
1/1 [==============================] - 0s 6ms/step - loss: 0.2632
<tensorflow.python.keras.callbacks.History at 0x14c69572688>