Home > Software engineering >  check if cumsum of the column is greater than range value than increment the element in list
check if cumsum of the column is greater than range value than increment the element in list

Time:05-02

I have a list

sample_dates = ["10/07/2021","11/07/2021","12/07/2021","13/07/2021",
                "14/07/2021","15/07/2021","16/07/2021","17/07/2021",
                "18/07/2021","19/07/2021","20/07/2021","21/07/2021",
                "22/07/2021","23/07/2021","24/07/2021"]

and dataframe like below

Truckid   Tripid   kms    
  1          1     700.3  
  1          1     608.9        
  1          1     400.2  
  1          2     100.2  
  1          2     140.8        
  1          3     1580.0 
  1          3     357.3        
  1          3     541.5  
  1          4     421.2   
  1          4     1694.4 
  1          4     1585.9 
  1          5     173.3  
  1          5     237.4   
  1          5     83.3   
  2          1     846.1  
  2          1     1167.6  
  2          2     388.8  
  2          2     70.5   
  2          2     127.1  
  2          3     126.7  
  2          3     262.4  

I want Date column by cumsum,if kms > 0 & < 2000 should have same date,if it increase 2000 than change the date, and than if it is > 2000 & < 3000 than do not change and than if its passes 3000 than again change the date. and so on

also if tripid changes than restart the counting from 0.

I want something like this

Truckid   Tripid   kms        Date
  1          1     700.3      10/07/2021
  1          1     608.9      10/07/2021      
  1          1     400.2      10/07/2021
  1          2     100.2      11/07/2021
  1          2     140.8      11/07/2021      
  1          3     1580.0     12/07/2021
  1          3     357.3      12/07/2021      
  1          3     541.5      13/07/2021
  1          4     421.2      14/07/2021 
  1          4     1694.4     15/07/2021
  1          4     1585.9     16/07/2021
  1          5     173.3      17/07/2021
  1          5     237.4      17/07/2021 
  1          5     83.3       17/07/2021
  2          1     846.1      18/07/2021
  2          1     1167.6     19/07/2021 
  2          2     388.8      20/07/2021
  2          2     70.5       20/07/2021
  2          2     127.1      20/07/2021
  2          3     126.7      21/07/2021
  2          3     262.4      21/07/2021

CodePudding user response:

You can compute the cumsum per group and either cut is manually or use a mathematical trick to make groups.

Then map your dates:

# round to thousands, clip to get min 1000 km
kms = df.groupby(['Truckid', 'Tripid'])['kms'].cumsum().floordiv(1000).clip(1)

# OR use manual bins
kms = pd.cut(df.groupby(['Truckid', 'Tripid'])['kms'].cumsum(),
             bins=[0,2000,3000,4000]) # etc. up to max wanted value


df['Date'] = (df
              .groupby(['Truckid', 'Tripid', kms]).ngroup() # get group ID
              .map(dict(enumerate(sample_dates)))      # match to items in order
             )

alternative to use consecutive days from the starting point:

df['Date'] = pd.to_datetime(df.groupby(['Truckid', 'Tripid', kms]).ngroup(),
                            unit='d', origin='2021-07-10')

output:

    Truckid  Tripid     kms        Date
0         1       1   700.3  10/07/2021
1         1       1   608.9  10/07/2021
2         1       1   400.2  10/07/2021
3         1       2   100.2  11/07/2021
4         1       2   140.8  11/07/2021
5         1       3  1580.0  12/07/2021
6         1       3   357.3  12/07/2021
7         1       3   541.5  13/07/2021
8         1       4   421.2  14/07/2021
9         1       4  1694.4  15/07/2021
10        1       4  1585.9  16/07/2021
11        1       5   173.3  17/07/2021
12        1       5   237.4  17/07/2021
13        1       5    83.3  17/07/2021
14        2       1   846.1  18/07/2021
15        2       1  1167.6  19/07/2021
16        2       2   388.8  20/07/2021
17        2       2    70.5  20/07/2021
18        2       2   127.1  20/07/2021
19        2       3   126.7  21/07/2021
20        2       3   262.4  21/07/2021
  • Related