I'm trying to scrape google for related searches when given a list of keywords, and then output these related searches into a csv file. My problem is getting beautiful soup to identify the related searches html tags.
Here is an example html tag in the source code:
<div data-ved="2ahUKEwitr8CPkLT3AhVRVsAKHVF-C80QmoICKAV6BAgEEBE">iphone xr</div>
Here are my webdriver settings:
from selenium import webdriver
user_agent = 'Chrome/100.0.4896.60'
webdriver_options = webdriver.ChromeOptions()
webdriver_options.add_argument('user-agent={0}'.format(user_agent))
capabilities = webdriver_options.to_capabilities()
capabilities["acceptSslCerts"] = True
capabilities["acceptInsecureCerts"] = True
Here is my code as is:
queries = ["iphone"]
driver = webdriver.Chrome(options=webdriver_options, desired_capabilities=capabilities, port=4444)
df2 = []
driver.get("https://google.com")
time.sleep(3)
driver.find_element(By.CSS_SELECTOR, "[aria-label='Agree to the use of cookies and other data for the purposes described']").click()
# get_current_related_searches
for query in queries:
driver.get("https://google.com/search?q=" query)
time.sleep(3)
soup = BeautifulSoup(driver.page_source, 'html.parser')
p = soup.find_all('div data-ved')
print(p)
d = pd.DataFrame({'loop': 1, 'source': query, 'from': query, 'to': [s.text for s in p]})
terms = d["to"]
df2.append(d)
time.sleep(3)
df = pd.concat(df2).reset_index(drop=False)
df.to_csv("related_searches.csv")
Its the p=soup.find_all which is incorrect I'm just not sure how to get BS to identify these specific html tags. Any help would be great :)
CodePudding user response:
@jakecohensol, as you've pointed out, the selector in p = soup.find_all
is wrong. The correct CSS selector: .y6Uyqe .AB4Wff
.
Chrome/100.0.4896.60
User-Agent header is incorrect. Google blocks requests with such an agent string. With the full User-Agent string Google returns a proper HTML response.
Google Related Searches can be scraped without a browser. It will be faster and more reliable.
Here's your fixed code snippet (link to the full code in online IDE)
import time
import requests
from bs4 import BeautifulSoup
import pandas as pd
headers = {
"User-Agent": "Mozilla/5.0 (X11; CrOS x86_64 14526.89.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.133 Safari/537.36"
}
queries = ["iphone", "pixel", "samsung"]
df2 = []
# get_current_related_searches
for query in queries:
params = {"q": query}
response = requests.get("https://google.com/search", params=params, headers=headers)
soup = BeautifulSoup(response.text, "html.parser")
p = soup.select(".y6Uyqe .AB4Wff")
d = pd.DataFrame(
{"loop": 1, "source": query, "from": query, "to": [s.text for s in p]}
)
terms = d["to"]
df2.append(d)
time.sleep(3)
df = pd.concat(df2).reset_index(drop=False)
df.to_csv("related_searches.csv")
Sample output:
,index,loop,source,from,to
0,0,1,iphone,iphone,iphone 13
1,1,1,iphone,iphone,iphone 12
2,2,1,iphone,iphone,iphone x
3,3,1,iphone,iphone,iphone 8
4,4,1,iphone,iphone,iphone 7
5,5,1,iphone,iphone,iphone xr
6,6,1,iphone,iphone,find my iphone
7,0,1,pixel,pixel,pixel 6
8,1,1,pixel,pixel,google pixel
9,2,1,pixel,pixel,pixel phone
10,3,1,pixel,pixel,pixel 6 pro
11,4,1,pixel,pixel,pixel 3
12,5,1,pixel,pixel,google pixel price
13,6,1,pixel,pixel,pixel 6 release date
14,0,1,samsung,samsung,samsung galaxy
15,1,1,samsung,samsung,samsung tv
16,2,1,samsung,samsung,samsung tablet
17,3,1,samsung,samsung,samsung account
18,4,1,samsung,samsung,samsung mobile
19,5,1,samsung,samsung,samsung store
20,6,1,samsung,samsung,samsung a21s
21,7,1,samsung,samsung,samsung login