I've got 4 columns with numeric values between 1 and 4, and I'm trying to see which rows change from a value of 1 to a value of 4 progressing from column a to column d within those 4 columns. Currently I'm pulling the difference between each of the columns and looking for a value of 3. Is there a better way to do this?
Here's what I'm looking for (with 0's in place of nan):
ID a b c d check
1 1 0 1 4 True
2 1 0 1 1 False
3 1 1 1 4 True
4 1 3 3 4 True
5 0 0 1 4 True
6 1 2 3 3 False
7 1 0 0 4 True
8 1 4 4 4 True
9 1 4 3 4 True
10 1 4 1 1 True
CodePudding user response:
You can just do cummax
col = ['a','b','c','d']
s = df[col].cummax(1)
df['new'] = s[col[:3]].eq(1).any(1) & s[col[-1]].eq(4)
Out[523]:
0 True
1 False
2 True
3 True
4 True
5 False
6 True
7 True
8 True
dtype: bool
CodePudding user response:
You can try compare the index of 4 and 1 in apply
cols = ['a', 'b', 'c', 'd']
def get_index(lst, num):
return lst.index(num) if num in lst else -1
df['Check'] = df[cols].apply(lambda row: get_index(row.tolist(), 4) > get_index(row.tolist(), 1), axis=1)
print(df)
ID a b c d check Check
0 1 1 0 1 4 True True
1 2 1 0 1 1 False False
2 3 1 1 1 4 True True
3 4 1 3 3 4 True True
4 5 0 0 1 4 True True
5 6 1 2 3 3 False False
6 7 1 0 0 4 True True
7 8 1 4 4 4 True True
8 9 1 4 3 4 True True