I have some data that I'd like to count occurrences in breaks, such as the following. The runif statement results in a vector with no zeros, so I create two data frames, one with and one without an added zero
library(dplyr)
breaks <- c(0, 1, 25, 50, 75, 100)
testValues <- runif(50, min = 0, max = 100)
testValues_df <- data.frame(lyr1 = testValues)
testValues_w0 <- c(testValues, 0)
testValues_w0_df <- data.frame(lyr1 = testValues_w0)
testValues_df %>%
group_by(gr=cut(lyr1, breaks= breaks, include.lowest = FALSE, right = FALSE) ) %>%
summarise(n= n()) %>%
arrange(as.numeric(gr))
testValues_w0_df %>%
group_by(gr=cut(lyr1, breaks= breaks, include.lowest = FALSE, right = FALSE) ) %>%
summarise(n= n()) %>%
arrange(as.numeric(gr))
The result is
# A tibble: 5 × 2
gr n
<fct> <int>
1 [0,1) 1
2 [1,25) 12
3 [25,50) 11
4 [50,75) 18
5 [75,100) 9
However, if I don't add the 0 to the data vector I get this.
A tibble: 4 × 2
gr n
<fct> <int>
1 [1,25) 12
2 [25,50) 11
3 [50,75) 18
4 [75,100) 9
Is there some way to force the second output to include [0,1] 0?
CodePudding user response:
We can use complete
afterwards
library(dplyr)
library(tidyr)
testValues_w0_df %>%
group_by(gr=cut(lyr1, breaks= breaks, include.lowest = FALSE,
right = FALSE) ) %>%
summarise(n= n(), .groups = 'drop') %>%
arrange(as.numeric(gr)) %>%
complete(gr = levels(gr), fill = list(n = 0))