df:
id name
0 toto
1 tata
0 NaN
I would like to impute the name column missing value on the third row based on the id. The desired dataframe would be:
id name
0 toto
1 tata
0 toto
I did the following:
df.loc[df.name.isna(), "name"] = df["id"].map(df["name"])
but it is not working.
CodePudding user response:
import pandas as pd
df = pd.DataFrame({'id':[0,1,0],
'name':['toto','tata',pd.NA]})
df = df[['id']].merge(df[pd.notna(df['name'])].drop_duplicates(),
how = 'left',
on = 'id')
df
CodePudding user response:
If there is only one value exists in the group, you can try
df = df.groupby('id').apply(lambda g: g.ffill().bfill())
print(df)
name
0 toto
1 tata
2 toto
Or sort NaN
to the last
df = (df.sort_values('name')
.groupby('id').ffill()
.sort_index())