I want to save my output regression of lmer() from lme4 R package. Is there any good way for this to get the out put below in a table e.g .csv or or .txt or .html, etc?
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 103.989 5.617 139.000 18.52 < 2e‐16 ***
age ‐0.172 0.177 139.000 ‐1.03 0.304
bmi 0.597 0.229 139.000 2.56 0.012 *
gender 1.019 0.325 139.000 3.15 0.002 **
I tried, tab_model() from library sjplot in R, but it does not give the SE, df and t value. I would like to save the output above. I appreciate any advice.
CodePudding user response:
Make sure the class of your model object is lmerMod
and it will work with stargazer
, which exports beautiful formatted regression tables to plain text, html, latex, etc. and has all sort of options to customize those tables (see the docs).
# class(mod)<- "lmerMod"
mod <- lme4::lmer(Ozone ~ Temp (1|Month),
data = airquality)
stargazer::stargazer(mod)
stargazer::stargazer(mod, type = "html")
CodePudding user response:
Update:to write to textfile:
library(lme4)
m1 <- lmer(drat ~ wt (1 wt|cyl), data=mtcars)
library(broom.mixed)
library(dplyr)
df<- m1 %>%
tidy()
write.table(df,"filename.txt",sep="\t",row.names=FALSE)
OR
m1 %>%
tidy() %>%
write.table(.,"filename.txt",sep="\t",row.names=FALSE)
"effect" "group" "term" "estimate" "std.error" "statistic"
"fixed" NA "(Intercept)" 4.67281034450577 0.344833957358875 13.5508996280279
"fixed" NA "wt" -0.344238767944164 0.0911701519816392 -3.77578363600283
"ran_pars" "cyl" "sd__(Intercept)" 0.374914148920673 NA NA
"ran_pars" "cyl" "cor__(Intercept).wt" -1 NA NA
"ran_pars" "cyl" "sd__wt" 0.0839046849277359 NA NA
"ran_pars" "Residual" "sd__Observation" 0.370192153038516 NA NA
One way could be using broom.mixed
package as suggested by @
user63230 in the comments section:
Here is an example:
library(lme4)
m1 <- lmer(drat ~ wt (1 wt|cyl), data=mtcars)
library(broom.mixed)
library(dplyr)
m1 %>%
tidy()
effect group term estimate std.error statistic
<chr> <chr> <chr> <dbl> <dbl> <dbl>
1 fixed NA (Intercept) 4.67 0.345 13.6
2 fixed NA wt -0.344 0.0912 -3.78
3 ran_pars cyl sd__(Intercept) 0.375 NA NA
4 ran_pars cyl cor__(Intercept).wt -1 NA NA
5 ran_pars cyl sd__wt 0.0839 NA NA
6 ran_pars Residual sd__Observation 0.370 NA NA