I am analysing an Internet guide, where I fond code like that. Can somebody explain me the usage of ~ and & operators?
Thanks in advance
uint8_t tx_fifo_put(tx_dataType data)
{
/*Check if FIFO is full*/
if((tx_put_itr - tx_get_itr) & ~(TXFIFOSIZE-1))
{
/*FIFO full - return TXFAIL*/
return (TXFAIL);
}
/*Put data into fifo*/
TX_FIFO[tx_put_itr & (TXFIFOSIZE - 1)] = data;
/*Incerment itr*/
tx_put_itr ;
return(TXSUCCESS);
}
CodePudding user response:
What the code does, is an obfuscated way to replace a more human readable code.
As a commenter wrote before me, the TX_FIFO[tx_put_itr & (TXFIFOSIZE - 1)] = data;
loops the output. Also as it was mentioned in comments, the code is meant to have size being power of two.
I do not know why it is done so, for me TX_FIFO[tx_put_itr % TXFIFOSIZE] = data
does the same, but more readable. Also, a person expects predicate checks to be before data access. At least it is my nature.
The (w - r) &~ size
part is a way to check for (1)w < r
and, (2) as an edge case, w
being equal to FIFOSIZE
and r
being zero. Semantically it should have meant, that "if the write pointer points to boundary, and read pointer points to start of a buffer, we suggest that, for our data structure, next write could be an overflow."
Let us see some code, numbers and their binary representation.
let s = 8 - 1, in binary is 00000111 and negated is 11111000.
let w = 0, let r = 1.
now in binary w = 00000000, r = 00000001.
w - r = 11111111, logical and that with ~(8 - 1) and get some value, other then zero.
Continuing the logic for the w < r
case, we get that any negative integer will produce some bits in the above. So this definitely gives true
for the OP if
code.
Now the w = r
case can not commit bits to the boolean test.
And last case,
let s = 8,
let w = 8
let r = 0
w - r = 00001000
~(8 - 1) = 11111000
(w - r) &~ 7 = 00001000
All other cases where w > r
give zero.
CodePudding user response:
The two operators:
&
is a bitwise and operator
~
is a bitwise complement operator
Now for the posted code it's important to notice that TXFIFOSIZE
must have a value which is a power of 2, i.e. values like 2, 4, 8, 16, 32, ...
When that is true, the code:
TX_FIFO[tx_put_itr & (TXFIFOSIZE - 1)] = data;
is equivalent to:
TX_FIFO[tx_put_itr % TXFIFOSIZE] = data;
Notice that tx_put_itr
is being incremented in such a way that it will take value higher than TXFIFOSIZE. So in order to get a valid array index the code must find the remainder of tx_put_itr
with respect to TXFIFOSIZE.
So how does work? Why are the above lines equivalent?
Let's take a value as example.
Assume TXFIFOSIZE is 8 (2 to the power of 3)
So TXFIFOSIZE-1 is 7
7 is bitwise 00....00111
And when you do:
SOME_NUMBER & 00....00111
You keep the 3 least significant bits of SOME_NUMBER
And that is exactly the remainder of when diving by 8
So let's look at
if((tx_put_itr - tx_get_itr) & ~(TXFIFOSIZE-1))
It is equivalent to
if((tx_put_itr - tx_get_itr) >= TXFIFOSIZE)
So it checks for "FIFO full"
Again using an example it works like this:
Assume TXFIFOSIZE is 8 (2 to the power of 3)
So TXFIFOSIZE-1 is 7
7 is bitwise 00....00111
~7 is bitwise 11....11000
And when you do:
SOME_NUMBER & 11....11000
You clear the 3 least significant bits of SOME_NUMBER and keep the rest unchanged
So if the result is non-zero it means that the difference between
tx_put_itr and tx_get_itr is 8 (or more).