Home > Software engineering >  Getting error when querying iceberg table via Spark thrift server using beeline client?
Getting error when querying iceberg table via Spark thrift server using beeline client?

Time:06-15

I am trying to query iceberg table (External table with data in S3 & Metadata in Hivemetastore) using spark thrift server coming as part of Spark. I am able to query non iceberg tables but when I query iceberg table I am getting below error. Can we not query iceberg table via spark thrift server?

Version details

  • Spark - 3.2.1
  • Scala - 2.12.15
  • Iceberg spark library - iceberg-spark-runtime-3.2_2.12
  • I have added other S3 , AWS dependency jars from maven and added in spark jars folder.

I have started the thrift server with following command

start-thriftserver.sh \
--hiveconf hive.metastore.uris=thrift://$ip:$port \
--conf spark.hadoop.fs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider \
--conf spark.hadoop.fs.s3a.access.key=$key \
--conf spark.hadoop.fs.s3a.secret.key=$secret \
--conf spark.sql.catalog.iceberg_catalog.uri=thrift://$ip:$port \
--conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \
--conf spark.sql.catalog.iceberg_catalog=org.apache.iceberg.spark.SparkSessionCatalog \
--conf spark.sql.catalog.iceberg_catalog.type=hive \
--conf spark.sql.catalog.iceberg_catalog.io-impl=org.apache.iceberg.aws.s3.S3FileIO \
--conf iceberg.engine.hive.enabled=true \

Error in beeline when querying iceberg table select count(*) from $table_name

Error: org.apache.hive.service.cli.HiveSQLException: Error running query: java.lang.RuntimeException: java.lang.InstantiationException
        at org.apache.spark.sql.hive.thriftserver.HiveThriftServerErrors$.runningQueryError(HiveThriftServerErrors.scala:44)
        at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:325)
        at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.$anonfun$run$2(SparkExecuteStatementOperation.scala:230)
        at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
        at org.apache.spark.sql.hive.thriftserver.SparkOperation.withLocalProperties(SparkOperation.scala:79)
        at org.apache.spark.sql.hive.thriftserver.SparkOperation.withLocalProperties$(SparkOperation.scala:63)
        at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.withLocalProperties(SparkExecuteStatementOperation.scala:43)
        at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:230)
        at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:225)
        at java.base/java.security.AccessController.doPrivileged(Native Method)
        at java.base/javax.security.auth.Subject.doAs(Subject.java:423)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1878)
        at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2.run(SparkExecuteStatementOperation.scala:239)
        at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
        at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
        at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
        at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
        at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: java.lang.RuntimeException: java.lang.InstantiationException
        at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:137)
        at org.apache.spark.rdd.HadoopRDD.getInputFormat(HadoopRDD.scala:191)
        at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:205)
        at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
        at scala.Option.getOrElse(Option.scala:189)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
        at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
        at scala.Option.getOrElse(Option.scala:189)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
        at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
        at scala.Option.getOrElse(Option.scala:189)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
        at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
        at scala.Option.getOrElse(Option.scala:189)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
        at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300)
        at scala.Option.getOrElse(Option.scala:189)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:296)
        at org.apache.spark.rdd.RDD.getNumPartitions(RDD.scala:316)
        at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture$lzycompute(ShuffleExchangeExec.scala:140)
        at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture(ShuffleExchangeExec.scala:139)
        at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.$anonfun$submitShuffleJob$1(ShuffleExchangeExec.scala:68)
        at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:222)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:219)
        at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.submitShuffleJob(ShuffleExchangeExec.scala:68)
        at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.submitShuffleJob$(ShuffleExchangeExec.scala:67)
        at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.submitShuffleJob(ShuffleExchangeExec.scala:115)
        at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.shuffleFuture$lzycompute(QueryStageExec.scala:170)
        at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.shuffleFuture(QueryStageExec.scala:170)
        at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.doMaterialize(QueryStageExec.scala:172)
        at org.apache.spark.sql.execution.adaptive.QueryStageExec.materialize(QueryStageExec.scala:82)
        at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.$anonfun$getFinalPhysicalPlan$5(AdaptiveSparkPlanExec.scala:256)
        at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.$anonfun$getFinalPhysicalPlan$5$adapted(AdaptiveSparkPlanExec.scala:254)
        at scala.collection.Iterator.foreach(Iterator.scala:943)
        at scala.collection.Iterator.foreach$(Iterator.scala:943)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
        at scala.collection.IterableLike.foreach(IterableLike.scala:74)
        at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
        at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
        at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.$anonfun$getFinalPhysicalPlan$1(AdaptiveSparkPlanExec.scala:254)
        at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
        at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.getFinalPhysicalPlan(AdaptiveSparkPlanExec.scala:226)
        at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.withFinalPlanUpdate(AdaptiveSparkPlanExec.scala:365)
        at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.executeCollect(AdaptiveSparkPlanExec.scala:338)
        at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715)
        at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2971)
        at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706)
        at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
        at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
        at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
        at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
        at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
        at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704)
        at org.apache.spark.sql.Dataset.collect(Dataset.scala:2971)
        at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:300)
        ... 16 more
Caused by: java.lang.InstantiationException
        at java.base/jdk.internal.reflect.InstantiationExceptionConstructorAccessorImpl.newInstance(InstantiationExceptionConstructorAccessorImpl.java:48)
        at java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:490)
        at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:135)
        ... 75 more (state=,code=0)

CodePudding user response:

Based on your configuration, it looks like you’re trying to use a catalog named iceberg_catalog, but it’s being configured as Iceberg’s SparkSessionCatalog.

However, SparkSessionCatalog is reserved for the default catalog that Spark uses, which allows that catalog to be used with both Iceberg tables and other formats.

The session catalog must be named spark_catalog. This is a requirement imposed by Spark.

So you need to either use org.apache.iceberg.SparkCatalog with your current configuration of a separate catalog named iceberg_catalog (where the name is up to you), or if you want to override the default catalog so that Iceberg tables and non-Iceberg tables can live within one catalog, you’d need to change the catalog name to spark_catalog and keep your current configuration.

Refer to the docs on adding catalogs. In the configuration used there the session catalog, spark_catalog, is overridden and then there is also a catalog named local that is distinct and can only have Iceberg tables.

  • Related