I have a numpy array with:
- col[0]=time=xaxis_data
- col[1:32]= lines for y axis.
Every second a new row of data is added to the array.
I am plotting the data and updating the plots, however I cannot get the colors of each line to stay fixed.
import numpy as np
import time
import matplotlib.pyplot as plt
#add time column
start_measurment = time.time()
#storing the updated data
to_plot = np.zeros((1, 33))
#maybe using this? my_colors = plt.rcParams['axes.prop_cycle'][:32]()
fig,ax = plt.subplots(1,1)
ax.set_xlabel('time(s)')
ax.set_ylabel('sim. Data')
for i in range (20): #updating plot 20 times
#simulate the data for Stack example
Simulated_data = (np.arange(32)*i).reshape((1, 32))
#insert the time as col[0]
Simulated_data = np.insert(Simulated_data, 0, [time.time()-start_measurment], axis=1) #insert time
#append new data to a numpy array
to_plot = np.append(to_plot,Simulated_data , axis=0)
#Plot Data
ax.plot(to_plot[:,0], to_plot[:,1:]) #Add here how to fix colours
fig.canvas.draw()
time.sleep(1)
CodePudding user response:
I don't think you can plot different colours in a single line plot statement but if you put in a nested for loop it is then possible:
import numpy as np
import time
import matplotlib.pyplot as plt
#add time column
start_measurment = time.time()
#storing the updated data
to_plot = np.zeros((1, 33))
#maybe using this? my_colors = plt.rcParams['axes.prop_cycle'][:32]()
fig,ax = plt.subplots(1,1)
ax.set_xlabel('time(s)')
ax.set_ylabel('sim. Data')
for i in range (100): #updating plot 20 times
#simulate the data for Stack example
Simulated_data = (np.arange(32)*i).reshape((1, 32))
#insert the time as col[0]
Simulated_data = np.insert(Simulated_data, 0, [time.time()-start_measurment], axis=1) #insert time
#append new data to a numpy array
to_plot = np.append(to_plot,Simulated_data , axis=0)
#Plot Data
for j in range(1,len(to_plot[0])-1):
ax.plot(to_plot[:,0], to_plot[:,j:j 1],c = f"C{j}") #Add here how to fix colours
fig.canvas.draw()
time.sleep(1)