Suppose I have to matrices U
and W
:
U = np.arange(6*2).reshape((6,2))
W = np.arange(5*2).reshape((5,2))
For a standard linear multiplication, I could do:
U @ W.T
array([[ 1, 3, 5, 7, 9],
[ 3, 13, 23, 33, 43],
[ 5, 23, 41, 59, 77],
[ 7, 33, 59, 85, 111],
[ 9, 43, 77, 111, 145],
[ 11, 53, 95, 137, 179]])
But I could also (technically) define a linear multiplication function, do this column-wise and sum in a for-loop:
def mult(U, W, i):
return U[:, [i]] @ W.T[[i],:]
sum([mult(U, W, i) for i in range(2)]) #1
array([[ 1, 3, 5, 7, 9],
[ 3, 13, 23, 33, 43],
[ 5, 23, 41, 59, 77],
[ 7, 33, 59, 85, 111],
[ 9, 43, 77, 111, 145],
[ 11, 53, 95, 137, 179]])
Now suppose mult()
isn't linear anymore, it is non-linear, custom, for example:
def mult(U, W, i):
return (U[:, [i]] @ W.T[[i],:]) * np.cos(U[:, [i]] @ W.T[[i],:])
sum([mult(U, W, i) for i in range(2)]) #2
You can verify this isn't identical to (U @ W.T) * np.cos(U @ W.T)
. But I wonder is there a more compact way of writing #2
, just as there is a more compact way of writing #1
if mult()
is linear. Efficiency would be nice but I'm not dealing with huge matrices.
CodePudding user response:
@
, like np.dot
is a matrix multiplication, involving what we often call a sum-of-products. This is a basic linear algebra operation, and np.matmul
uses highly efficient compiled libraries to do this (where possible).
Your sum([mult(...))
is doing that - take the row/column products and summing them. The compiled code probably uses more efficient methods that work well in iterative c
or Fortran
.
Your mult
function could use broadcasted element-wise multiplication. For one i
:
In [43]: i=1;U[:, [i]] @ W.T[[i],:] # (6,1) @ (1,5) => (6,5)
Out[43]:
array([[ 1, 3, 5, 7, 9],
[ 3, 9, 15, 21, 27],
[ 5, 15, 25, 35, 45],
[ 7, 21, 35, 49, 63],
[ 9, 27, 45, 63, 81],
[11, 33, 55, 77, 99]])
In [44]: i=1;U[:, [i]] * W.T[[i],:]
Out[44]:
array([[ 1, 3, 5, 7, 9],
[ 3, 9, 15, 21, 27],
[ 5, 15, 25, 35, 45],
[ 7, 21, 35, 49, 63],
[ 9, 27, 45, 63, 81],
[11, 33, 55, 77, 99]])
And without the list comprehension this can be written as:
In [46]: (U[:,None,:]*W[None,:,:]).shape
Out[46]: (6, 5, 2)
In [47]: (U[:,None,:]*W[None,:,:]).sum(axis=2)
Out[47]:
array([[ 1, 3, 5, 7, 9],
[ 3, 13, 23, 33, 43],
[ 5, 23, 41, 59, 77],
[ 7, 33, 59, 85, 111],
[ 9, 43, 77, 111, 145],
[ 11, 53, 95, 137, 179]])
As for your version with `np.cos:
In [48]: def mult(U, W, i):
...: return (U[:, [i]] @ W.T[[i],:]) * np.cos(U[:, [i]] @ W.T[[i],:])
...: sum([mult(U, W, i) for i in range(2)]) #2
Out[48]:
array([[ 5.40302306e-01, -2.96997749e 00, 1.41831093e 00,
5.27731578e 00, -8.20017236e 00],
[-2.96997749e 00, -1.08147468e 01, -1.25593190e 01,
-1.37606696e 00, -2.32102995e 01],
[ 1.41831093e 00, -1.25593190e 01, 9.45751861e 00,
-2.14489310e 01, 5.03346370e 01],
[ 5.27731578e 00, -1.37606696e 00, -2.14489310e 01,
1.01223418e 01, 3.13845563e 01],
[-8.20017236e 00, -2.32102995e 01, 5.03346370e 01,
3.13845563e 01, 8.79904273e 01],
[ 4.86826779e-02, 7.72350858e 00, -2.54605509e 01,
-5.95298563e 01, -4.88871235e 00]])
I can use the same outer/sum format:
In [49]: (U[:,None,:]*W[None,:,:]*np.cos(U[:,None,:]*W[None,:,:])).sum(axis=2)
Out[49]:
array([[ 5.40302306e-01, -2.96997749e 00, 1.41831093e 00,
5.27731578e 00, -8.20017236e 00],
[-2.96997749e 00, -1.08147468e 01, -1.25593190e 01,
-1.37606696e 00, -2.32102995e 01],
[ 1.41831093e 00, -1.25593190e 01, 9.45751861e 00,
-2.14489310e 01, 5.03346370e 01],
[ 5.27731578e 00, -1.37606696e 00, -2.14489310e 01,
1.01223418e 01, 3.13845563e 01],
[-8.20017236e 00, -2.32102995e 01, 5.03346370e 01,
3.13845563e 01, 8.79904273e 01],
[ 4.86826779e-02, 7.72350858e 00, -2.54605509e 01,
-5.95298563e 01, -4.88871235e 00]])
And since the outer product is used twice, we can use a temporary variable:
In [51]: temp=U[:,None,:]*W[None,:,:];
(temp*np.cos(temp)).sum(axis=2)
Out[51]:
array([[ 5.40302306e-01, -2.96997749e 00, 1.41831093e 00,
5.27731578e 00, -8.20017236e 00],
[-2.96997749e 00, -1.08147468e 01, -1.25593190e 01,
-1.37606696e 00, -2.32102995e 01],
[ 1.41831093e 00, -1.25593190e 01, 9.45751861e 00,
-2.14489310e 01, 5.03346370e 01],
[ 5.27731578e 00, -1.37606696e 00, -2.14489310e 01,
1.01223418e 01, 3.13845563e 01],
[-8.20017236e 00, -2.32102995e 01, 5.03346370e 01,
3.13845563e 01, 8.79904273e 01],
[ 4.86826779e-02, 7.72350858e 00, -2.54605509e 01,
-5.95298563e 01, -4.88871235e 00]])
The fact that you can't simply interchange the multiplication and sum steps is a matter of basic algebra.
To get
a1*b1 a2*b2
from
(a1 a2)*(b1 b2) => a1*b1 a1*b2 a2*b1 a2*b2
the a1*b2 a2*b1
terms have to sum to zero, as with the magnitude of a complex number:
In [53]: (1 4j)*(1-4j)
Out[53]: (17 0j) # (1 16)
The sum of products cannot, in general be converted to a product of sums.