Thank you for your ideas - I have been trying to make a scatter plot using a loop to filter for unique (2) row values for x values (column data) and y values (column data). The column data for the scatter plot is made when the 2 row conditions are met. My data looks like this:
site_name power_1 wind_speed month year day hour power_2
A 50 5.5 1 2021 2 5 60
A 75 5.9 2 2021 8 17 70
A 40 7.3 5 2021 11 20 85
B 80 8.1 4 2021 1 4 90
B 84 8.2 7 2021 18 5 92
B 46 6.1 10 2021 23 11 41
I am trying to plot each site in a separate scatter plot with x = wind speed and y = power_1 and each hour a different color. Ultimately, I need 2 scatter plots (A, B) for wind speed and power and then 3 different color points for the x, y values. I hope this makes sense.
I have tried using a 2-loop structure - 1 outer loop for the sites (A, B) and an inner loop for the colors of the x, y values.
My actual code to a much larger dataset than I show above resembles below and I get a blank plot when I use this:
#PLOT ALL HOURS OF THE MONTHS/YEARS - WIND SPEED vs POWER
sites = (dfc1.plant_name.unique())
sites = sites.tolist()
import matplotlib.patches
from scipy.interpolate import interp1d
levels, categories = pd.factorize(dfc1.hour.unique())
colors = [plt.cm.Paired(k) for k in levels]
handles = [matplotlib.patches.Patch(color=plt.cm.Paired(k), label=c) for k, c in enumerate(categories)]
#fig, ax = plt.subplots(figsize=(10,4))
for i in range(len(sites)):
#fig = plt.figure()
for j in np.arange(0,24): #24 HOURS AND 1 COLOR FOR EACH UNIQUE HOUR
x = dfc1.loc[dfc1['plant_name']==sites[i]].groupby(['hour']).wind_speed_ms
y = dfc1.loc[dfc1['plant_name']==sites[i]].groupby(['hour']).power_kwh
plt.scatter(x,y, edgecolors=colors[0:j],marker='o',facecolors='none')
site = str(sites[i])
plt.title(site (' ') str(dfc1.columns[5]) (' ') ('vs') (' ') str(dfc1.columns[3]) )
plt.xlabel('Wind Speed'); plt.ylabel('Power')
plt.legend(handles=handles, title="Month",loc='center left', bbox_to_anchor=(1,0.5),edgecolor='black')
#plt.plot(mwsvar.iloc[-1,4], mpvar.iloc[-1,4], c='orange',linestyle=(0,()),marker="o",markersize=7)
plt.legend()
plt.show()
CodePudding user response:
I think you're very close, here's a solution using matplotlib which is kind of long and unwieldy but I think it's the correct solution. Then I also show using a different library called seaborn which makes plots like this much easier
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
df = pd.DataFrame({
'site_name': ['A', 'A', 'A', 'B', 'B', 'B'],
'power_1': [50, 75, 40, 80, 84, 46],
'wind_speed': [5.5, 5.9, 7.3, 8.1, 8.2, 6.1],
'month': [1, 2, 5, 4, 7, 10],
'year': [2021, 2021, 2021, 2021, 2021, 2021],
'day': [2, 8, 11, 1, 18, 23],
'hour': [5, 17, 20, 4, 5, 11],
'power_2': [60, 70, 85, 90, 92, 41],
})
#Matplotlib approach
cmap = mpl.cm.get_cmap('Blues')
hour_colors = {h 1:cmap(h/24) for h in range(24)} #different color for each hour
for site_name,site_df in df.groupby('site_name'):
fig, ax = plt.subplots()
for hour,hour_df in site_df.groupby('hour'):
x = hour_df['wind_speed']
y = hour_df['power_1']
color = hour_colors[hour]
ax.scatter(x, y, color=color, label=f'Hour {hour}')
ax.legend()
plt.title(f'Station {site_name}')
plt.xlabel('Wind speed')
plt.ylabel('Power 1')
plt.show()
plt.close()
#Seaborn approach (different library)
import seaborn as sns
sns.relplot(
x = 'wind_speed',
y = 'power_1',
col = 'site_name',
hue = 'hour',
data = df,
)
plt.show()
plt.close()