I'd like to create a new velocity
variable. In my data set:
library(dplyr)
library(tidyr)
day <- c(0,47,76,118,160,193,227,262,306,355,396,450)
AT <- c(0.14,0.48,0.83,0.83,0.94,0.94,0.94,0.94,0.94,11.93,12.81,29.36)
ClassType <- c("Class_0_1","Class_0_1","Class_0_1","Class_0_1","Class_0_1","Class_0_1",
"Class_0_1","Class_0_1","Class_0_1","Class_9_25","Class_9_25","Class_25_50")
ClassMax <-c(1,1,1,1,1,1,1,1,1,25,25,50)
my.ds <- data.frame(day,AT,ClassType,ClassMax)
my.ds
# day AT ClassType ClassMax
# 1 0 0.14 Class_0_1 1
# 2 47 0.48 Class_0_1 1
# 3 76 0.83 Class_0_1 1
# 4 118 0.83 Class_0_1 1
# 5 160 0.94 Class_0_1 1
# 6 193 0.94 Class_0_1 1
# 7 227 0.94 Class_0_1 1
# 8 262 0.94 Class_0_1 1
# 9 306 0.94 Class_0_1 1
# 10 355 11.93 Class_9_25 25
# 11 396 12.81 Class_9_25 25
# 12 450 29.36 Class_25_50 50
If ClassType
changes, take the next AT
value minus actual ClassType
values and divide by the difference between the two correspondent dates. In my case:
(11.93 0.94) / (355-306)
#[1] 0.2242857
(12.81-11.93) / (396-355)
#[1] 0.02146341
(29.36-12.81) / (450-396)
#[1] 0.3064815
But if AT
is in a new ClassType
but do not change based in ClassMax
then ignore it.
I have a min to max custom ordination complte.cases <- c("Class_0_1","Class_1_3","Class_3_9", "Class_9_25","Class_25_50","Class_50")
.
I'd like to repeat the last velocity
value inside the intermediate absent ClassType.
I try to do without success:
my.ds$velocity <- c(0,diff(my.ds$AT))/c(0,diff(my.ds$day))
final.ds <- %>%
group_by(nest,ClassType)%>%
summarize(velocity=mean(velocity)) %>%
complete(ClassType, tidyr:fill = list(velocity = NA)) %>%
fill(velocity, .direction = "downup")
}
My desirable output must to be:
final.ds
# ClassType velocity
# Class_ 0_1 0.224285714
# Class_ 1_3 0.224285714
# Class_ 3_9 0.224285714
# Class_ 9_25 0.224285714
# Class_ 9_25 0.021463415
# Class_ 9_25 0.306481481
Please, any help with it?
CodePudding user response:
How about this:
my.ds %>%
group_by(ClassType) %>%
mutate(velocity = c(NA, diff(AT) / diff(day))) %>%
ungroup()
# # A tibble: 12 x 5
# day AT ClassType ClassMax velocity
# <dbl> <dbl> <chr> <dbl> <dbl>
# 1 0 0.14 Class_0_1 1 NA
# 2 47 0.48 Class_0_1 1 0.00723
# 3 76 0.83 Class_0_1 1 0.0121
# 4 118 0.83 Class_0_1 1 0
# 5 160 0.94 Class_0_1 1 0.00262
# 6 193 0.94 Class_0_1 1 0
# 7 227 0.94 Class_0_1 1 0
# 8 262 0.94 Class_0_1 1 0
# 9 306 0.94 Class_0_1 1 0
# 10 355 11.9 Class_9_25 25 NA
# 11 396 12.8 Class_9_25 25 0.0215
# 12 450 29.4 Class_25_50 50 NA
CodePudding user response:
complete.cases <- c("Class_0_1","Class_1_3","Class_3_9", "Class_9_25","Class_25_50")
my.ds %>% group_by(ClassType = factor(ClassType, levels = complete.cases), grp = lag(match(ClassType, unique(ClassType)), default = 1)) %>% slice_tail(n = 1) %>%
ungroup %>%summarise(ClassType, velocity = c(NA, diff(AT))/c(NA, diff(day))) %>%
complete(ClassType) %>%
fill(velocity, .direction = "updown")
# ClassType velocity
# <fct> <dbl>
# 1 Class_0_1 0.224
# 2 Class_1_3 0.224
# 3 Class_3_9 0.224
# 4 Class_9_25 0.224
# 5 Class_9_25 0.0215
# 6 Class_25_50 0.306