I am learning transfer learning. i am new to this. I'm currently trying to create a model, but I'm getting an error (NameError: name 'scipy' is not defined).
I'm going to learn from the video. We have loaded some datasets to the computer and I am trying to convert these datasets into '.json' and '.h5' files. I had to run the code you saw in the first part and create the model. There was supposed to be a download like in the video, but instead I got an error and I can't solve it.
here are my codes:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense
from keras.applications.vgg16 import VGG16
import matplotlib.pyplot as plt
from glob import glob
from keras.utils import img_to_array
from keras.utils import load_img
train_path = "/Users/atakansever/Desktop/CNNN/fruits-360_dataset/fruits-360/Training/"
test_path = "/Users/atakansever/Desktop/CNNN/fruits-360_dataset/fruits-360/Test/"
# img = load_img(train_path "Tangelo/0_100.jpg")
# plt.imshow(img)
# plt.axes("off")
# plt.show()
numberOfClass = len(glob(train_path "/*"))
# print(numberOfClass)
vgg = VGG16()
# print(vgg.summary())
vgg_layer_list = vgg.layers
# print(vgg_layer_list)
model = Sequential()
for i in range(len(vgg_layer_list)-1):
model.add(vgg_layer_list[i])
# print(model.summary())
for layers in model.layers:
layers.trainable = False
model.add(Dense(numberOfClass, activation="softmax"))
# print(model.summary())
model.compile(loss = "categorical_crossentropy",optimizer = "rmsprop",metrics = ["accuracy"])
#train
train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224,224))
test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224,224))
batch_size = 32
hist = model.fit_generator(train_data,
steps_per_epoch=1600//batch_size,
epochs=25,
validation_data= test_data,
validation_steps=800//batch_size)
and here is the error
pyenv shell 3.9.7
atakansever@atakan-Air CNNN % pyenv shell 3.9.7
pyenv: shell integration not enabled. Run `pyenv init' for instructions.
atakansever@atakan-Air CNNN % /Users/atakansever/.pyenv/versions/3.9.7/bin/python /Users/atakansever/Desktop/CNNN/fruits.py
Metal device set to: Apple M1
systemMemory: 8.00 GB
maxCacheSize: 2.67 GB
2022-07-10 11:17:50.428036: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support.
2022-07-10 11:17:50.428259: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)
Found 67692 images belonging to 131 classes.
Found 22688 images belonging to 131 classes.
/Users/atakansever/Desktop/CNNN/fruits.py:53: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.
hist = model.fit_generator(train_data, steps_per_epoch=1600//batch_size,epochs=25,validation_data= test_data,validation_steps=800//batch_size)
Traceback (most recent call last):
File "/Users/atakansever/Desktop/CNNN/fruits.py", line 53, in <module>
hist = model.fit_generator(train_data, steps_per_epoch=1600//batch_size,epochs=25,validation_data= test_data,validation_steps=800//batch_size)
File "/Users/atakansever/.pyenv/versions/3.9.7/lib/python3.9/site-packages/keras/engine/training.py", line 2260, in fit_generator
return self.fit(
File "/Users/atakansever/.pyenv/versions/3.9.7/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/Users/atakansever/.pyenv/versions/3.9.7/lib/python3.9/site-packages/keras/preprocessing/image.py", line 2244, in apply_affine_transform
if scipy is None:
NameError: name 'scipy' is not defined
I am using stackoverflow for the first time. I'm sorry if I made a mistake while asking a question.
CodePudding user response:
try pip install scipy
or pip3 install scipy
would solve the problem
CodePudding user response:
First, install the scipy package if it isn't already installed:
pip install scipy
and then add scipy to your imports:
import scipy # This is new!
from keras.preprocessing.image import ImageDataGenerator
# ... all your imports