I have created the following pandas dataframe called train
:
import pandas as pd
import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf
import scipy.stats as stats
ds = {
'matchKey' : [621062, 622750, 623508, 626451, 626611, 626796, 627114, 630055, 630225],
'og_max_last_dpd' : [10, 10, -99999, 10, 10, 10, 10, 10, 10],
'og_min_last_dpd' : [10, 10, -99999, 10, 10, 10, 10, 10, 10],
'og_max_max_dpd' : [0, 0, -99999, 1, 0, 5, 0, 4, 0],
'Target':[1,0,1,0,0,1,1,1,0]
}
train = pd.DataFrame(data=ds)
The dataframe looks like this:
print(train)
matchKey og_max_last_dpd og_min_last_dpd og_max_max_dpd Target
0 621062 10 10 0 1
1 622750 10 10 0 0
2 623508 -99999 -99999 -99999 1
3 626451 10 10 1 0
4 626611 10 10 0 0
5 626796 10 10 5 1
6 627114 10 10 0 1
7 630055 10 10 4 1
8 630225 10 10 0 0
I have then binned the column called og_max_max_dpd
using this code:
def mono_bin(Y, X, char, n=20):
X2 = X.fillna(-99999)
r = 0
while np.abs(r) < 1:
d1 = pd.DataFrame({"X": X2, "Y": Y, "Bucket": pd.qcut(X2, n, duplicates="drop")})#,include_lowest=True
d2 = d1.groupby("Bucket", as_index=True)
r, p = stats.spearmanr(d2.mean().X, d2.mean().Y)
n = n - 1
d3 = pd.DataFrame(d2.min().X, columns=["min_" X.name])
d3["max_" X.name] = d2.max().X
d3[Y.name] = d2.sum().Y
d3["total"] = d2.count().Y
d3[Y.name "_rate"] = d2.mean().Y
d4 = (d3.sort_values(by="min_" X.name)).reset_index(drop=True)
# print("=" * 85)
# print(d4)
ninf = float("-inf")
pinf = float(" inf")
array = []
for i in range(len(d4) - 1):
array.append(d4["max_" char].iloc[i])
return [ninf] array [pinf]
binner = mono_bin(train['Target'], train['og_max_max_dpd'], 'og_max_max_dpd')
I have printed out the binner
which looks like this:
print(binner)
[-inf, -99999.0, nan, 0.0, nan, nan, 1.0, nan, nan, 4.0, nan, inf]
I want to remove the nan from that list so that the binner looks like this:
[-inf, -99999.0, 0.0, 1.0, 4.0, inf]
Does anyone know how to remove the nan
?
CodePudding user response:
You can simply use dropna to remove it from d4:
...
d3[Y.name "_rate"] = d2.mean().Y
d4 = (d3.sort_values(by="min_" X.name)).reset_index(drop=True)
d4.dropna(inplace=True)
# print("=" * 85)
# print(d4)
ninf = float("-inf")
...