I have a DataFrame like this, where for column2 I need to add 0.004 throughout the column to get a 0 value in row 1 of column 2. Similarly, for column 3 I need to subtract 0.4637 from the entire column to get a 0 value at row 1 column 3. How do I efficiently execute this?
Here is my code -
df2 = pd.DataFrame(np.zeros((df.shape[0], len(df.columns)))).round(0).astype(int)
for (i,j) in zip(range(0, 5999),range(1,len(df.columns))):
if j==1:
df2.values[i,j] = df.values[i,j] df.values[0,1]
elif j>1:
df2.iloc[i,j] = df.iloc[i,j] - df.iloc[0,j]
print(df2)
Any help would be greatly appreciated. Thank you.
CodePudding user response:
df2 = df - df.iloc[0]
Explanation:
Let's work through an example.
df = pd.DataFrame(np.arange(20).reshape(4, 5))
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 |
1 | 5 | 6 | 7 | 8 | 9 |
2 | 10 | 11 | 12 | 13 | 14 |
3 | 15 | 16 | 17 | 18 | 19 |
df.iloc[0]
selects the first row of the dataframe:
0 0
1 1
2 2
3 3
4 4
Name: 0, dtype: int64
This is a Series. The first column printed here is its index (column names of the dataframe), and the second one - the actual values of the first row of the dataframe.
We can convert it to a list to better see its values
df.iloc[0].tolist()
[0, 1, 2, 3, 4]
Then, using broadcasting, we are subtracting each value from the whole column where it has come from.