I have the data df
. I want to delete last observations after matching two column values
i.e., cate=Yes ~ value=1
.
df <- data.frame(id=c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,5,5,6,6,6,6,7,7,7,7,7),
cate=c('No','Yes','Yes','No','Yes','No','Yes','Yes','Yes','No','No','No','Yes','Yes',
'No','No','Yes','Yes','No',NA,'No','Yes','Yes','Yes','No','Yes','Yes','Yes','Yes'),
value=c(0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0))
df
id cate value
1 1 No 0
2 1 Yes 0
3 1 Yes 0
4 1 No 0
5 1 Yes 0
6 2 No 0
7 2 Yes 1
8 2 Yes 0
9 2 Yes 0
10 2 No 0
11 3 No 0
12 3 No 0
13 3 Yes 0
14 3 Yes 0
15 3 No 0
16 4 No 0
17 4 Yes 0
18 4 Yes 0
19 5 No 0
20 5 Yes 0
21 6 No 0
22 6 Yes 1
23 6 Yes 0
24 6 Yes 0
25 7 No 0
26 7 Yes 1
27 7 Yes 1
28 7 Yes 0
29 7 Yes 0
I want to delete observations per group id after matching cate=Yes and value=1
.
Then the expected output is
id cate value
1 1 No 0
2 1 Yes 0
3 1 Yes 0
4 1 No 0
5 1 Yes 0
6 2 No 0
7 2 Yes 1
8 3 No 0
9 3 No 0
10 3 Yes 0
11 3 Yes 0
12 3 No 0
13 4 No 0
14 4 Yes 0
15 4 Yes 0
16 5 No 0
17 5 Yes 0
18 6 No 0
19 6 Yes 1
20 7 No 0
21 7 Yes 1
CodePudding user response:
- We can use
slice
to select indices from 1 to the required row , taking care ofNA
, so we usecoalesce
withn()
to select all rows which does not meet our condition .
library(dplyr)
df |> group_by(id) |>
slice(1:coalesce(which(cate == "Yes" & value == 1)[1] , n()))
- Output
# A tibble: 21 × 3
# Groups: id [7]
id cate value
<dbl> <chr> <dbl>
1 1 No 0
2 1 Yes 0
3 1 Yes 0
4 1 No 0
5 1 Yes 0
6 2 No 0
7 2 Yes 1
8 3 No 0
9 3 No 0
10 3 Yes 0
# … with 11 more rows
CodePudding user response:
We could group by 'id', get the cumulative sum of logical expression (cumsum
), take the cumsum
again, then filter
the rows where the values are less than 2 (thus it will get the full row for some 'id' that doesn't have any match and the rows till the first match if there are)
library(dplyr)
df %>%
group_by(id) %>%
filter(cumsum(cumsum(cate == 'Yes' & value == 1))<= 1) %>%
ungroup