I have two dataframes, with a similar strucure:
df_I <- structure(list(year = c("2006", "2006", "2006", "2006", "2006",
"2006", "2006", "2006", "2006"), code = c(0, 1110,
1120, 1130, 1220, 1230, 1310, 1320, 1330), `1` = c(1L,
8L, 2L, 2L, 0L, 2L, 0L, 1L, 0L), `2` = c(0L, 10L, 0L, 0L,
0L, 2L, 1L, 3L, 1L), `3` = c(4L, 2L, 1L, 2L, 0L, 4L,
0L, 0L, 3L), `4` = c(4L, 6L, 0L, 3L, 1L, 3L, 0L, 0L, 3L),
totaal = c(11, 26, 3, 7, 1, 9, 7, 7, 6)), row.names = c(NA,
-9L), class = c("tbl_df", "tbl", "data.frame"))
# A tibble: 9 × 7
year code `1` `2` `3` `4` totaal
<chr> <dbl> <int> <int> <int> <int> <dbl>
1 2006 0 1 0 4 4 11
2 2006 1110 8 10 2 6 26
3 2006 1120 2 0 1 0 3
4 2006 1130 2 0 2 3 7
5 2006 1220 0 0 0 1 1
6 2006 1230 2 2 4 3 9
7 2006 1310 0 1 0 0 7
8 2006 1320 1 3 0 0 7
9 2006 1330 0 1 3 3 6
df_II <- structure(list(year = c("2006", "2006", "2006", "2006", "2006",
"2006", "2006", "2006", "2006", "2006"), code = c(0, 1110,
1120, 1130, 1210, 1220, 1230, 1310, 1320, 1330), `1` = c(15806L,
655L, 105L, 328L, 138L, 452L, 445L, 471L, 672L, 615L), `2` = c(9681L,
337L, 68L, 215L, 97L, 357L, 366L, 245L, 440L, 360L), `3` = c(10457L,
221L, 40L, 123L, 65L, 325L, 322L, 151L, 352L, 332L), `4` = c(7109L,
128L, 5L, 64L, 56L, 256L, 240L, 83L, 274L, 192L), totaal = c(43053,
1341, 218, 730, 356, 1390, 1373, 950, 1738, 1499)), row.names = c(NA,
-10L), class = c("tbl_df", "tbl", "data.frame"))
# A tibble: 10 × 7
year code `1` `2` `3` `4` totaal
<chr> <dbl> <int> <int> <int> <int> <dbl>
1 2006 0 15806 9681 10457 7109 43053
2 2006 1110 655 337 221 128 1341
3 2006 1120 105 68 40 5 218
4 2006 1130 328 215 123 64 730
5 2006 1210 138 97 65 56 356
6 2006 1220 452 357 325 256 1390
7 2006 1230 445 366 322 240 1373
8 2006 1310 471 245 151 83 950
9 2006 1320 672 440 352 274 1738
10 2006 1330 615 360 332 192 1499
I would like to create a new data.frame df_out
, which divides df_I
by df_II
, for columns 1,2,3,4, totaal
by year
and code
. The issue is that not every code
is available for each year.
What is the best way to divide this unequal dataframe?
Desired outcome:
# A tibble: 10 × 7
year code `1` `2` `3` `4` totaal
<chr> <dbl> <int> <int> <int> <int> <dbl>
1 2006 0 1 /15806 0/9681 4/10457 4/7109 11/43053
CodePudding user response:
You could subset
the second data frame using %in%
, assuming both code columns are properly ordered.
cols <- as.character(1:4)
cbind(df_I[setdiff(names(df_I), cols)], df_I[cols] / subset(df_II, code %in% df_I$code, cols))
# year code totaal 1 2 3 4
# 1 2006 0 11 6.326711e-05 0.000000000 0.0003825189 0.000562667
# 2 2006 1110 26 1.221374e-02 0.029673591 0.0090497738 0.046875000
# 3 2006 1120 3 1.904762e-02 0.000000000 0.0250000000 0.000000000
# 4 2006 1130 7 6.097561e-03 0.000000000 0.0162601626 0.046875000
# 5 2006 1220 1 0.000000e 00 0.000000000 0.0000000000 0.003906250
# 6 2006 1230 9 4.494382e-03 0.005464481 0.0124223602 0.012500000
# 7 2006 1310 7 0.000000e 00 0.004081633 0.0000000000 0.000000000
# 8 2006 1320 7 1.488095e-03 0.006818182 0.0000000000 0.000000000
# 9 2006 1330 6 0.000000e 00 0.002777778 0.0090361446 0.015625000
CodePudding user response:
You could use complete
to make the number of rows between the two data frames equal, and then do the division:
library(tidyr)
df_I %<>%
complete(code = df_II$code) %>%
fill(year) %>%
replace(is.na(.), 0)
cbind(df_I[c(1, 2)], df_I[-c(1, 2)] / df_II[-c(1, 2)])
code year `1` `2` `3` `4` totaal
<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 2006 0.0000633 0 0.000383 0.000563 0.000255
2 1110 2006 0.0122 0.0297 0.00905 0.0469 0.0194
3 1120 2006 0.0190 0 0.025 0 0.0138
4 1130 2006 0.00610 0 0.0163 0.0469 0.00959
5 1210 2006 0 0 0 0 0
6 1220 2006 0 0 0 0.00391 0.000719
7 1230 2006 0.00449 0.00546 0.0124 0.0125 0.00655
8 1310 2006 0 0.00408 0 0 0.00737
9 1320 2006 0.00149 0.00682 0 0 0.00403
10 1330 2006 0 0.00278 0.00904 0.0156 0.00400