I have a function f(x,y)
where t
is a parameter. I'm trying to plot the function where t = 1
for x and y values ranging from -5 to 5. The plot doesn't render.
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook
C = sv.CoordSys3D("")
x, y, z = C.base_scalars()
t = sp.symbols("t")
f = sp.sin(2*sp.pi*t)*sp.exp(-(x-3*sp.sin(sp.pi*t))**2 -(y-3*sp.cos(sp.pi*t))**2)
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(projection='3d')
X = np.linspace(-5,5,100)
Y = np.linspace(-5,5,100)
xvals, yvals = np.meshgrid(X,Y)
zvals = sp.lambdify((x,y),f.subs(t,1),"numpy")(xvals,yvals)
ax.plot_surface(xvals,yvals,zvals)
plt.show()
I get an error 'int' object has no attribute 'ndim'
which I don't know how to solve.
CodePudding user response:
The problem is that when you execute f.subs(t,1)
it returns a number (zero in this case). So, f=0
is the expression that you are going to lambdify. Let's see the function generated by lambdify
:
import inspect
print(inspect.getsource(sp.lambdify((x,y),f.subs(t,1),"numpy")))
# def _lambdifygenerated(Dummy_25, Dummy_24):
# return 0
So, no matter the values and shape of xvals
and yvals
, that numerical function will always return 0
, which is an integer number.
However, ax.plot_surface
requires zvals
to have the same shape as xvals
or yval
. Luckily, we can easily fix that with a simple if
statement:
import sympy as sp
import sympy.vector as sv
import numpy as np
import matplotlib.pyplot as plt
C = sv.CoordSys3D("")
x, y, z = C.base_scalars()
t = sp.symbols("t")
f = sp.sin(2*sp.pi*t)*sp.exp(-(x-3*sp.sin(sp.pi*t))**2 -(y-3*sp.cos(sp.pi*t))**2)
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(projection='3d')
X = np.linspace(-5,5,100)
Y = np.linspace(-5,5,100)
xvals, yvals = np.meshgrid(X,Y)
zvals = sp.lambdify((x,y),f.subs(t,1),"numpy")(xvals,yvals)
# if zvals is just a number, create a proper matrix
if not isinstance(zvals, np.ndarray):
zvals = zvals * np.ones_like(xvals)
ax.plot_surface(xvals,yvals,zvals)
plt.show()
CodePudding user response:
The fact that this doesn't render is bug in lambdify
that it doesn't work well for constant expressions.
Your real problem though is that the expression you are trying to plot is just zero:
In [5]: f
Out[5]:
2 2
- (x_ - 3⋅sin(π⋅t)) - (y_ - 3⋅cos(π⋅t))
ℯ ⋅sin(2⋅π⋅t)
In [6]: f.subs(t, 1)
Out[6]: 0