I have a CSV file which looks like:
Detection,Imagename,Frame_Identifier,TL_x,TL_y,BR_x,BR_y,detection_Confidence,Target_Length,Species,Confidence
0,201503.20150619.181140817.204628.jpg,0,272,142.375,382.5,340,0.475837,0,fish,0.475837
1,201503.20150619.181141498.204632.jpg,3,267.75,6.375,422.875,80.75,0.189145,0,fish,0.189145
2,201503.20150619.181141662.204633.jpg,4,820.25,78.625,973.25,382.5,0.615788,0,fish,0.615788
3,201503.20150619.181141662.204633.jpg,4,1257,75,1280,116,0.307278,0,fish,0.307278
4,201503.20150619.181141834.204634.jpg,5,194,281,233,336,0.586944,0,fish,0.586944
I load it as pandas.Dataframe
named: imageannotation
- I am interested in extracting a dictionary
which has as key
the imagename
(note: Imagename can have duplicate rows), and as value
, an other dictionary
whit 2 keys: ['bbox',, 'species']
, where bbox
is a list given by the TL_x, TL_y, BR_x, BR_y
values
I can accomplish this with the following code:
test = {
i: {
"bbox": imageannotation[imageannotation["Imagename"] == i][
["TL_x", "TL_y", "BR_x", "BR_y"]
].values,
"species": imageannotation[imageannotation["Imagename"] == i][
["Species"]
].values,
}
for i in imageannotation["Imagename"].unique()
}
The results looks like this:
mydict = {'201503.20150619.181140817.204628': {'bbox': array([[272. , 142.375, 382.5 , 340. ]]),
'species': array([['fish']], dtype=object)},
'201503.20150619.181141498.204632': {'bbox': array([[267.75 , 6.375, 422.875, 80.75 ]]),
'species': array([['fish']], dtype=object)},
'201503.20150619.181141662.204633': {'bbox': array([[ 820.25 , 78.625, 973.25 , 382.5 ],
[1257. , 75. , 1280. , 116. ]]),
'species': array([['fish'],
['fish']], dtype=object)},
'201503.20150619.181141834.204634': {'bbox': array([[194., 281., 233., 336.],
[766., 271., 789., 293.]]),
'species': array([['fish'],
['fish']], dtype=object)}}
which is what I wanted but can get extremely slow when working on large files.
Q: Do you have any better way to accomplish this?
My final target is to add a new column to a dataframe imagemetadata
which is bigger than the has an Imagename field with unique values - and I do this last operation with:
for i in mydict:
imagemetadata.loc[imagemetadata.Imagename == i, "annotation"] = [test[I]]
CodePudding user response:
(Revised answer now that I re-read things.)
This seems to be what you might be after; group the annotations by Imagename, make a dict-of-lists out of them, map them into the other dataframe.
import io
import pandas as pd
imageannotation = pd.read_csv(
io.StringIO(
"""
Detection,Imagename,Frame_Identifier,TL_x,TL_y,BR_x,BR_y,detection_Confidence,Target_Length,Species,Confidence
0,201503.20150619.181140817.204628.jpg,0,272,142.375,382.5,340,0.475837,0,fish,0.475837
1,201503.20150619.181141498.204632.jpg,3,267.75,6.375,422.875,80.75,0.189145,0,fish,0.189145
2,201503.20150619.181141662.204633.jpg,4,820.25,78.625,973.25,382.5,0.615788,0,fish,0.615788
3,201503.20150619.181141662.204633.jpg,4,1257,75,1280,116,0.307278,0,fish,0.307278
4,201503.20150619.181141834.204634.jpg,5,194,281,233,336,0.586944,0,fish,0.586944
"""
)
)
# (Pretend this comes from a separate file)
imagemetadata = pd.DataFrame({"Imagename": imageannotation.Imagename.unique()})
def make_annotation(r):
return {
"bbox": [r.TL_x, r.TL_y, r.BR_x, r.BR_y],
"species": r.Species,
}
annotations_by_image = (
imageannotation.groupby("Imagename")
.apply(lambda r: r.apply(make_annotation, axis=1).to_list())
.to_dict()
)
imagemetadata = pd.DataFrame({"Imagename": imageannotation.Imagename.unique()})
imagemetadata["annotation"] = imagemetadata.Imagename.map(annotations_by_image)
print(imagemetadata)
The output is
Imagename annotation
0 201503.20150619.181140817.204628.jpg [{'bbox': [272.0, 142.375, 382.5, 340.0], 'spe...
1 201503.20150619.181141498.204632.jpg [{'bbox': [267.75, 6.375, 422.875, 80.75], 'sp...
2 201503.20150619.181141662.204633.jpg [{'bbox': [820.25, 78.625, 973.25, 382.5], 'sp...
3 201503.20150619.181141834.204634.jpg [{'bbox': [194.0, 281.0, 233.0, 336.0], 'speci...
If you want imagemetadata
to have multiple lines if annotation
has multiple entries,
imagemetadata = imagemetadata.explode("annotation").reset_index(drop=True)
Revised, again
For a dict-of-lists instead of a list-of-dicts, it's even simpler:
# Generate a bbox column
imageannotation["bbox"] = imageannotation.apply(lambda x: [x.TL_x, x.TL_y, x.BR_x, x.BR_y], axis=1)
# Get the columns we want as a dict
annotations_by_image = imageannotation.groupby("Imagename").agg({"bbox": list, "Species": list}).to_dict("index")
# Apply the annotations to the other df
imagemetadata["annotation"] = imagemetadata.Imagename.map(annotations_by_image)
print(imagemetadata)
The output is
Imagename annotation
0 201503.20150619.181140817.204628.jpg {'bbox': [[272.0, 142.375, 382.5, 340.0]], 'Sp...
1 201503.20150619.181141498.204632.jpg {'bbox': [[267.75, 6.375, 422.875, 80.75]], 'S...
2 201503.20150619.181141662.204633.jpg {'bbox': [[820.25, 78.625, 973.25, 382.5], [12...
3 201503.20150619.181141834.204634.jpg {'bbox': [[194.0, 281.0, 233.0, 336.0]], 'Spec...