To give you context,
The variable elementInput
is dynamic. I do not know the exact length of it.
It can be 10, 5, or etc.
The *Element channel type is struct
My example is working. But my problem is this implementation is still synchronized, because I am waiting for the channel return so that I can append it to my result
Can you pls help me how to concurrent call GetElements()
function and preserve the order defined in elementInput
(based on index)
elementInput := []string{FB_FRIENDS, BEAUTY_USERS, FITNESS_USERS, COMEDY_USERS}
wg.Add(len(elementInput))
for _, v := range elementInput {
//create channel
channel := make(chan *Element)
//concurrent call
go GetElements(ctx, page, channel)
//Preserve the order
var elementRes = *<-channel
if len(elementRes.List) > 0 {
el = append(el, elementRes)
}
}
wg.Wait()
CodePudding user response:
Your implementation is not concurrent.
Reason after every subroutine call you are waiting for result, that is making this serial
Below is Sample implementation similar to your flow
- calling Concurreny method which calls function concurrently
- afterwards we loop and collect response from every above call
- main subroutine sleep for 2 seconds
Go PlayGround with running code -> Sample Application
func main() {
Concurrency()
time.Sleep(2000)
}
func response(greeter string, channel chan *string) {
reply := fmt.Sprintf("hello %s", greeter)
channel <- &reply
}
func Concurrency() {
events := []string{"ALICE", "BOB"}
channels := make([]chan *string, 0)
// start concurrently
for _, event := range events {
channel := make(chan *string)
go response(event, channel)
channels = append(channels, channel)
}
// collect response
response := make([]string, len(channels))
for i := 0; i < len(channels); i {
response[i] = *<-channels[i]
}
// print response
log.Printf("channel response %v", response)
}