Based on the dataset below, how can I find/filter the rows with incorrect and no (NA
) date values in the Request Date
column?
Basically the correct dates will be something like, for example, 1/01/2022
or 11/01/2022
.
Data:
structure(list(Year = c("2022", "2022", "2022", "2022", "2022",
"2022", "2022", "2022", "2022", "2022"), `Reference Number` = c("14784",
"14784", "14785", "14785", "14786", "14786", "14787", "14787",
"14788", "14788"), `Request Date` = c("1/6/2022", "1/6/2022",
"11/19/2022", "Happy New Year", "1899-12-31 02:40:00", "Ongoing", "1//12/05",
"01/14/205", "1/25/20`22", NA)), row.names = c(NA, -10L
), class = c("tbl_df", "tbl", "data.frame"))
Code:
library(tidyverse)
df = df %>% filter() #.... stuck
CodePudding user response:
use anytime::anytime
fucntion:
df %>% filter(is.na(anytime::anytime(`Request Date`)))
# A tibble: 5 × 3
Year `Reference Number` `Request Date`
<chr> <chr> <chr>
1 2022 14785 Happy New Year
2 2022 14787 1//12/05
3 2022 14787 01/14/205
4 2022 14788 1/25/20`22
5 2022 14788 NA