How can I find the same values in the columns regardless of their position?
df = pd.DataFrame({'one':['A','B', 'C', 'D', 'E', np.nan, 'H'],
'two':['B', 'E', 'C', np.nan, np.nan, 'H', 'L']})
The result I want to get:
three
0 B
1 E
2 C
3 H
CodePudding user response:
The exact logic is unclear, you can try:
out = pd.DataFrame({'three': sorted(set(df['one'].dropna())
&set(df['two'].dropna()))})
output:
three
0 B
1 C
2 E
3 H
Or maybe you want to keep the items of col two?
out = (df.loc[df['two'].isin(df['one'].dropna()), 'two']
.to_frame(name='three')
)
output:
three
0 B
1 E
2 C
5 H
CodePudding user response:
Try this:
df = pd.DataFrame(set(df['one']).intersection(df['two']), columns=['Three']).dropna()
print(df)
Output:
Three
1 C
2 H
3 E
4 B