Let's say I want to create a variadic interface with different overloads for the structs A,B,C:
struct A{};
struct B{};
struct C{};
template <typename ... Ts>
class Base;
template <typename T>
class Base<T>{
public:
virtual void visit(const T& t) const
{
// default implementation
}
};
template<typename T, typename ... Ts>
class Base<T, Ts...>: Base<T>, Base<Ts...>{
public:
using Base<T>::visit;
using Base<Ts...>::visit;
};
int main()
{
A a;
B b;
auto base = Base<A,B,C>{};
auto base2 = Base<A,C,B>{};
base.visit(a);
base2.visit(b);
}
Now funtionally Base<A,B,C>
is identical to Base<A,C,B>
but the compiler still generates the different combinations. Of course with more template parameters it gets worse.
I assume there is some meta programming magic which can cut this code bloat down.
One solution might be to define template<typename T, typename U> Base<T,U>
in a way that it checks if Base<U,T>
already exists. This could reduce at least some combinations and can probably be done by hand for triplets as well. But I am missing some meta programming magic and hoping for a more general approach.
Edit: I would like to have the variadic Interface for a (simplified) use case like that:
class Implementation:public Base<A,B,C>
{
public:
void visit(const A& a) const
{
std::cout <<"Special implementation for type A";
}
void visit(const B& a) const
{
std::cout <<"Special implementation for type B";
}
// Fall back to all other types.
};
using BaseInterface = Base<A,B,C>;
void do_visit(const BaseInterface& v)
{
v.visit(A{});
v.visit(B{});
v.visit(C{});
}
int main()
{
std::unique_ptr<BaseInterface> v= std::make_unique<Implementation>();
do_visit(*v);
}
The reason why I want to do this is that there could be potentially a lot of types A,B,C,... and I want to avoid code duplication to define the overload for each type.
CodePudding user response:
Looks like the member function should be a template rather than the class.
struct A{};
struct B{};
struct C{};
class Foo {
public:
template<typename T>
void visit(const T& t) const
{
// default implementation
}
};
int main()
{
A a;
B b;
auto foo = Foo{};
foo.visit(a);
foo.visit(b);
}
https://godbolt.org/z/nTrYY6qcn
I'm not sure what is your aim, since there is not enough details. With current information I think this is best solution (there is a also a lambda which can address issue too).
CodePudding user response:
Base<A, B, C>
instantiates Base<A>
, Base<B, C>
, Base<B>
, Base<C>
and
Base<A, C, B>
instantiates Base<A>
, Base<C, B>
, Base<B>
, Base<C>
Whereas final nodes are needed, intermediate nodes increase the bloat.
You can mitigate that issue with:
template <typename T>
class BaseLeaf
{
public:
virtual ~BaseLeaf() = default;
virtual void visit(const T& t) const
{
// default implementation
}
};
template <typename... Ts>
class Base : public BaseLeaf<Ts>...
{
public:
using BaseLeaf<Ts>::visit...;
};
Base<A,B,C>
and Base<A,C,B>
are still different types.
To be able to have same type, they should alias to the same type, and for that, ordering Ts...
should be done in a way or another.
CodePudding user response:
It's necessary to enforce some sort of discipline on the order of template parameters. You can do this with a template variable and a few static_assert
s:
#include <type_traits>
template <typename ... Ts>
class Base;
struct A
{
};
struct B
{
};
struct C
{
};
struct D
{
};
template <class T>
static constexpr int visit_sequence_v = -1;
template <>
constexpr int visit_sequence_v<A> = 0;
template <>
constexpr int visit_sequence_v<B> = 1;
template <>
constexpr int visit_sequence_v<C> = 2;
template <typename T>
class Base<T>{
public:
static_assert(visit_sequence_v<T> >= 0, "specialize visit_sequence_v for this type");
virtual void visit(const T& t) const
{
// do nothing by default
}
};
template<typename T1, typename T2>
class Base<T1, T2>: Base<T1>, Base<T2>
{
public:
static_assert(std::is_same_v<T1, T2> || visit_sequence_v<T1> < visit_sequence_v<T2>);
using Base<T1>::visit;
using Base<T2>::visit;
};
template<typename T1, typename T2, typename ... Ts>
class Base<T1, T2, Ts...>: Base<T1>, Base<T2, Ts...>
{
public:
static_assert(std::is_same_v<T1, T2> || visit_sequence_v<T1> < visit_sequence_v<T2>);
using Base<T1>::visit;
using Base<Ts...>::visit;
};
int main()
{
A a;
B b;
auto base = Base<A,B,C>{};
//auto base2 = Base<A,C,B>{}; // static_assert fails
//auto base3 = Base<A,B,C,D>{}; // forgot to specialize
base.visit(a);
}
Notice the point here is to cause a compilation failure if you get the order wrong. If someone has the chops to do a compile-time sort it may be possible to cobble up a traits class (or a template function that you can use decltype
on the return type) that selects an implementation of Base
in the correct order.
One alternative is to declare a full specialization of Base
for every individual type that can be visited (supplying a "default implementation" for visit
) and declare a static constexpr visit_sequence
within each specialzation.
A problem inherent in your method is that in the case of multiple inheritance, visit
can be ambiguous:
struct E: public A, public B
{
};
// 5 MiNuTES LATeR...
DescendantOfBase<A, B> a_b;
E e;
a_b.visit (e); // ambiguous