Home > Software engineering >  Getting rid of missing values in a dataset
Getting rid of missing values in a dataset

Time:10-16

I am trying to get rid of the missing values of a dataset using

na.rm = TRUE

However, it continues having the missing values and it only works when I use

na.omit(data)

How can I make the first code work?

This is what I have and that doesn't work:

edu2018$mathtest[edu2018$mathtest < 0] <- NA
summary(edu2018$mathtest, na.rm=TRUE)

It shows that there are 104 NA's in the dataset

The code that works is:

edu2018$mathtest[edu2018$mathtest < 0] <- NA
edu2018 <- na.omit(edu2018)
summary(edu2018$mathtest)

These are the results I get

The median and mean it returns for these two codes are different.

CodePudding user response:

Does the following work?

library(tidyverse)
edu2018New <- edu2018 |> 
  drop_na() |>
  summarize(mean = mean(mathtest),
            median = median(mathtest))

edu2018New

CodePudding user response:

The problem with your code is that you are using na.omit across the entire dataset and not just the variable you want. na.omit will remove any rows with NA, not just the rows with NA in the column you are interested. See the example below:

test <- mtcars
test$mpg[test$mpg < 20] <- NA
test$cyl[test$cyl < 6] <- NA

test
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8  NA 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout     NA   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant               NA   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360            NA   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4  NA 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8  NA 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280              NA   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C             NA   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE            NA   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL            NA   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC           NA   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood    NA   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental   NA   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial     NA   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4  NA  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4  NA  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9  NA  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5  NA 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger      NA   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin           NA   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28            NA   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird      NA   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3  NA  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0  NA 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4  NA  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L        NA   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino          NA   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora         NA   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4  NA 121.0 109 4.11 2.780 18.60  1  1    4    2


summary(test$mpg)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
#>   21.00   21.43   23.60   25.48   29.62   33.90      18
summary(na.omit(test$mpg))
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>   21.00   21.43   23.60   25.48   29.62   33.90

test2 <- na.omit(test)
summary(test2$mpg)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>   21.00   21.00   21.00   21.13   21.20   21.40

Notice that when we do not remove the NA's and when we remove the NA's for the variable of interest, we get the same mean and medians. When we remove all the NA's from the full dataset, we get a different result because there are other columns that have NA; therefore, we remove some of the rows with non-NA values for mpg.

  • Related