Home > Software engineering >  Create dataframe with specific slices out of existing dataframe, based on date variabels
Create dataframe with specific slices out of existing dataframe, based on date variabels

Time:10-20

I have the following dataframe (df) with a column 'date' and 'values'. I am looking for a solution how to create a new dataframe from the variables start_MM_DD and end_MM_DD (month and day). For each year a column with the corresponding values should be created. the data frame "df" can start earlier or data can be missing, depending on how the variables start.

import pandas as pd
import numpy as np


df = pd.DataFrame({'date':pd.date_range(start='2020-01-03', end='2022-01-10')})
df['randNumCol'] = np.random.randint(1, 6, df.shape[0])


start_MM_DD = '01-01'
end_MM_DD = '01-15'

the new dataframe should look like:

enter image description here

CodePudding user response:

# create your date range; the year does not matter
d_range = pd.date_range('2022-01-01', '2022-01-15').strftime('%m-%d')

# use boolean indexing to filter your frame based on the months and days you want
new = df[df['date'].dt.strftime('%m-%d').isin(d_range)].copy()

# get the year from the date column
new['year'] = new['date'].dt.year

# pivot the frame
new['date'] = new['date'].dt.strftime('%m-%d')
print(new.pivot('date', 'year', 'randNumCol'))

year   2020  2021  2022
date                   
01-01   NaN   3.0   5.0
01-02   NaN   4.0   2.0
01-03   2.0   4.0   3.0
01-04   3.0   3.0   3.0
01-05   2.0   2.0   4.0
01-06   5.0   5.0   3.0
01-07   1.0   3.0   3.0
01-08   2.0   5.0   2.0
01-09   2.0   2.0   5.0
01-10   5.0   5.0   2.0
01-11   5.0   5.0   NaN
01-12   2.0   3.0   NaN
01-13   1.0   2.0   NaN
01-14   1.0   3.0   NaN
01-15   4.0   3.0   NaN

CodePudding user response:

This is just a pivot table that has been filtered by dates:

import pandas as pd
import numpy as np


df = pd.DataFrame({'date':pd.date_range(start='2020-01-03', end='2022-01-10')})
df['randNumCol'] = np.random.randint(1, 6, df.shape[0])

df = (
    df.loc[(df['date'].dt.month.eq(1)) & (df['date'].dt.day.between(1,15))]
      .pivot_table(index=df['date'].dt.day,
                   columns=df['date'].dt.year)
).droplevel(0, axis=1).rename_axis(None)

print(df)

Output

date  2020  2021  2022
1      NaN   2.0   1.0
2      NaN   5.0   4.0
3      3.0   1.0   2.0
4      3.0   1.0   2.0
5      4.0   5.0   5.0
6      5.0   1.0   4.0
7      2.0   4.0   2.0
8      4.0   3.0   3.0
9      5.0   5.0   3.0
10     4.0   3.0   3.0
11     1.0   1.0   NaN
12     2.0   2.0   NaN
13     1.0   4.0   NaN
14     3.0   2.0   NaN
15     1.0   3.0   NaN
  • Related