I have a dataframe "result" and want to create a new column called "type". The value in "type" will be the item value of a dict if the column "Particulars" in the dataframe contains value of the key.
dict_classify={'key1': 'content1',
'key2':'content2'
}
result['type']=[dict_classify[key] if key.lower() in i.lower() else np.nan
for key in dict_classify.keys()
for i in result['Particulars']]
It returns error "Length of values (5200) does not match length of index (1040)". Any idea what i did wrong?
CodePudding user response:
It sounds like each entry i
of result["Particulars"]
is either a key from dict_classify
in which case we want the corresponding entry of result["type"]
to be dict_classify[i]
, or is not a key in which case we want the corresponding entry to be NaN
. If that's the case, then you should have something like
result['type'] = [dict_classify.get(i,np.nan) for i in result['Particulars']]
The same result could more efficiently be attained with
result['type'] = result['Particulars'].apply(lambda i: dict_classify.get(i,np.nan))
CodePudding user response:
result['type'] = [dict_classify.get(i,np.nan) for i in result['Particulars']]
The same result could more efficiently be attained with
result['type'] = result['Particulars'].apply(lambda i: dict_classify.get(i,np.nan))