I'm making a transformer using tensorflow.keras
and having issues understanding how the attention_mask
works for a MultiHeadAttention
layer.
My input is 3-dimensional data. For example, let's assume my whole dataset has 10 elements, each one with length no more than 4:
# whole data
[
# first item
[
[ 1, 2, 3],
[ 1, 2, 3],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
],
# second item
[
[ 1, 2, 3],
[ 5, 8, 2],
[ 3, 7, 8],
[ 4, 6, 2],
],
... # 8 more items
]
So, my mask looks like:
# assume this is a numpy array
mask = [
[
[1, 1, 1],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0],
],
[
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
],
...
]
So the shape of the mask til now is [10, 4, 3]
. Let's say I use batch_size = 5
. Now, according documentation, attention_mask
shape should be [B, T, S]
(batch_size, query_size, key_size). In the example case should be [5, 4, 4]
?
Question
If the mask is calculated only once, what 5 items should I give as a mask? This sounds counterintuitive to me. How should I build the mask?
According this answer, head_size should be also taken in account, so they also do:
mask = mask[:, tf.newaxis, tf.newaxis, :]
What I've tested
The only time I manage to run the transformer successfully using the attention_mask
is when I do:
mask = np.ones((batch_size, data.shape[1], data.shape[2]))
mask = mask[:, tf.newaxis, tf.newaxis, :]
Obviously that mask makes no sense, because it is all ones, but it was just to test if it had the correct shape.
The model
I'm using practically the same code from the keras
example transformer for time series classification
def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0.0, mask=None):
# Normalization and Attention
x = layers.LayerNormalization(epsilon=1e-6)(inputs)
x = layers.MultiHeadAttention(
key_dim=head_size, num_heads=num_heads, dropout=dropout
)(x, x, attention_mask=mask)
x = layers.Dropout(dropout)(x)
res = x inputs
# Feed Forward Part
x = layers.LayerNormalization(epsilon=1e-6)(res)
x = layers.Conv1D(filters=ff_dim, kernel_size=1, activation="relu")(x)
x = layers.Dropout(dropout)(x)
x = layers.Conv1D(filters=inputs.shape[-1], kernel_size=1)(x)
return x res
def build_model(
n_classes,
input_shape,
head_size,
num_heads,
ff_dim,
num_transformer_blocks,
mlp_units,
dropout=0.0,
mlp_dropout=0.0,
input_mask=None,
) -> keras.Model:
inputs = keras.Input(shape=input_shape)
x = inputs
for _ in range(num_transformer_blocks):
x = transformer_encoder(x, head_size, num_heads, ff_dim, dropout, input_mask)
x = layers.GlobalAveragePooling2D(data_format="channels_first")(x)
for dim in mlp_units:
x = layers.Dense(dim, activation="relu")(x)
x = layers.Dropout(mlp_dropout)(x)
outputs = layers.Dense(n_classes, activation="softmax")(x)
return keras.Model(inputs, outputs)
CodePudding user response:
First, a simpler example to understand
MultiHeadAttention
mask.
#Crude Self attention implementation
query = tf.constant([[1], [2], [3], [4]], dtype=tf.float32) #Shape([4, 1])
scores = tf.matmul(query, query, transpose_b=True) #Shape([4, 4])
#unnormalized, presoftmax score
The above is the attention scores
for the given query. attention_mask
is used when you want to prevent attention to certain positions in this score. So mask dimension should be same as the attention score dimension.
Lets say, we decide that the current token in the above example needs to attend to only itself and to the next token, then we can define mask as:
mask = tf.constant([[1., 1., -np.inf, -np.inf],
[-np.inf, 1., 1. ,-np.inf],
[-np.inf, -np.inf, 1., 1.],
[-np.inf, -np.inf, -np.inf, 1.]])
#apply mask on the score
scores = scores*mask
#softmax
scores = tf.nn.softmax(scores)
#scores, ( 0 indicates no attention)
[[0.26894143, 0.73105854, 0. , 0. ],
[0. , 0.11920292, 0.880797 , 0. ],
[0. , 0. , 0.04742587, 0.95257413],
[0. , 0. , 0. , 1. ]]
#score weighted queries
value = tf.matmul(scores, query)
#value is a weighted average of the current and next token of ( [[1], [2], [3], [4]])
[[1.7310585], #weighted average of ([1], [2]) (current and next)
[2.8807971],
[3.9525743],
[4. ]]
Can there be different mask for each item in the batch?.
Yes, a use case i can think of is when you have padding for different samples in the same batch, so the mask can be set to ignore those paddings.
Your specific case: The mask has to be
(batch_size, 4, 4)
. The mask can be same for each item in the batch.
batch_size = 5
query = keras.Input(shape=(4, 3))
mask_tensor = keras.Input(shape=(4, 4))
#keras layer
mha = keras.layers.MultiHeadAttention(num_heads=1, key_dim=3)
output = mha(query=query, value=query, attention_mask=mask_tensor, return_attention_scores=True)
#Create a model
model = keras.Model([query, mask_tensor], output)
#random query and mask. Note the mask needs to be (1:attention or 0:no attention)
queries = tf.random.normal(shape=(batch_size, 4, 3))
mask_data = tf.random.uniform(maxval=2, shape=(batch_size, 4, 4), dtype=tf.int32)
#calling the model
values, attn_weights = model.predict([queries, mask_data])
#attm_weights.shape
(5, 1, 4, 4)
CodePudding user response:
After a little research and seeing several transformer model examples this is what solved the problem for me.
- Create a custom
TransformerBlock
layer that supports masking - Add a
mask
parameter in thecall
method of theTransformerBlock
and reshape it there. - Add a
Masking
layer before theTransformerBlock
Code:
class TransformerBlock(layers.Layer):
def __init__(self, head_size, num_heads, ff_dim, ff_dim2, rate=0.1):
super().__init__()
self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=head_size)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
self.conv1 = layers.Conv1D(filters=ff_dim, kernel_size=1, activation="relu")
self.conv2 = layers.Conv1D(filters=ff_dim2, kernel_size=1)
self.supports_masking = True
def call(self, inputs, training, mask=None):
padding_mask = None
if mask is not None:
padding_mask = tf.cast(mask[:, tf.newaxis, tf.newaxis, :], dtype="int32")
out_norm1 = self.layernorm1(inputs, training=training)
out_att = self.att(
out_norm1, out_norm1, training=training, attention_mask=padding_mask
)
out_drop1 = self.dropout1(out_att, training=training)
res = out_drop1 inputs
out_norm2 = self.layernorm2(res, training=training)
out_conv1 = self.conv1(out_norm2, training=training)
out_drop2 = self.dropout2(out_conv1, training=training)
out_conv2 = self.conv2(out_drop2, training=training)
return out_conv2 res
def build_model(
n_classes,
input_shape,
head_size,
num_heads,
ff_dim,
num_transformer_blocks,
mlp_units,
dropout=0.0,
mlp_dropout=0.0,
mask=None,
) -> keras.Model:
inputs = keras.Input(shape=input_shape)
_x = inputs
if mask is not None:
_x = layers.Masking(mask_value=mask)(_x)
for _ in range(num_transformer_blocks):
_x = TransformerBlock(
head_size,
num_heads,
ff_dim,
inputs.shape[-1],
dropout,
)(_x)
_x = layers.GlobalAveragePooling2D(data_format="channels_first")(_x)
for dim in mlp_units:
_x = layers.Dense(dim, activation="relu")(_x)
_x = layers.Dropout(mlp_dropout)(_x)
outputs = layers.Dense(n_classes, activation="softmax")(_x)
return keras.Model(inputs, outputs)