` set.seed(500)
index <- sample(1:nrow(Bands_reflectance_2017),100, replace = FALSE )
Bands_reflectance_2017 <- dput(head(Bands_reflectance_2017[1:100]))
Bands_reflectance_2017 <- structure( list( t2017.01.05T08.25.12.000000000_blue = c(5064L, 5096L, 5072L, 5048L, 5048L, 5064L), t2017.01.15T08.26.22.000000000_blue = c(418L, 487L, 480L, 449L, 449L, 480L), t2017.01.25T08.21.38.000000000_blue = c(312L, 414L, 385L, 385L, 385L, 403L), t2017.02.04T08.27.09.000000000_blue = c(5156L, 5096L, 5204L, 5240L, 5240L, 5112L), t2017.02.14T08.27.29.000000000_blue = c(2554L, 2896L, 2842L, 2776L, 2776L, 2934L), t2017.02.24T08.23.38.000000000_blue = c(2662L, 2428L, 2630L, 2644L, 2644L, 2276L), t2017.03.06T08.24.47.000000000_blue = c(340L, 403L, 409L, 407L, 407L, 391L), t2017.03.16T08.16.07.000000000_blue = c(188L, 245L, 257L, 239L, 239L, 245L), t2017.03.26T08.22.43.000000000_blue = c(379L, 397L, 381L, 345L, 345L, 387L), t2017.04.05T08.23.06.000000000_blue = c(604L, 647L, 639L, 647L, 647L, 631L), t2017.04.15T08.23.45.000000000_blue = c(311L, 382L, 376L, 379L, 379L, 425L), t2017.04.25T08.23.17.000000000_blue = c(219L, 318L, 237L, 322L, 322L, 302L), t2017.05.05T08.23.45.000000000_blue = c(979L, 1030L, 1021L, 1030L, 1030L, 985L), t2017.05.15T08.28.11.000000000_blue = c(138L, 219L, 196L, 201L, 201L, 247L), t2017.05.25T08.23.46.000000000_blue = c(655L, 779L, 736L, 752L, 752L, 777L), t2017.06.04T08.25.50.000000000_blue = c(318L, 419L, 384L, 343L, 343L, 400L), t2017.06.14T08.28.06.000000000_blue = c(397L, 387L, 407L, 432L, 432L, 347L), t2017.06.24T08.26.00.000000000_blue = c(336L, 450L, 402L, 395L, 395L, 388L), t2017.07.04T08.23.42.000000000_blue = c(502L, 538L, 512L, 495L, 495L, 505L), t2017.07.09T08.23.09.000000000_blue = c(568L, 597L, 639L, 611L, 611L, 577L), t2017.07.19T08.23.43.000000000_blue = c(479L, 517L, 536L, 529L, 529L, 528L), t2017.07.24T08.23.44.000000000_blue = c(409L, 499L, 499L, 473L, 473L, 482L), t2017.07.29T08.26.12.000000000_blue = c(781L, 801L, 810L, 823L, 823L, 735L), t2017.08.03T08.26.43.000000000_blue = c(517L, 579L, 560L, 583L, 583L, 564L), t2017.08.08T08.23.41.000000000_blue = c(575L, 654L, 650L, 650L, 650L, 602L), t2017.08.13T08.23.44.000000000_blue = c(623L, 679L, 708L, 698L, 698L, 677L), t2017.08.18T08.25.16.000000000_blue = c(614L, 651L, 648L, 597L, 597L, 651L), t2017.08.23T08.22.22.000000000_blue = c(554L, 613L, 559L, 524L, 524L, 596L), t2017.08.28T08.28.01.000000000_blue = c(769L, 814L, 772L, 744L, 744L, 828L), t2017.09.02T08.23.42.000000000_blue = c(756L, 761L, 763L, 783L, 783L, 742L), t2017.09.07T08.23.30.000000000_blue = c(807L, 865L, 826L, 838L, 838L, 837L), t2017.09.12T08.23.35.000000000_blue = c(861L, 869L, 876L, 904L, 904L, 869L), t2017.09.22T08.23.38.000000000_blue = c(4640L, 3780L, 4340L, 4728L, 4728L, 3060L), t2017.09.27T08.16.41.000000000_blue = c(778L, 777L, 811L, 839L, 839L, 752L), t2017.10.02T08.17.41.000000000_blue = c(766L, 868L, 851L, 857L, 857L, 799L), t2017.10.07T08.24.51.000000000_blue = c(767L, 816L, 839L, 830L, 830L, 753L), t2017.10.12T08.24.39.000000000_blue = c(678L, 688L, 706L, 750L, 750L, 627L), t2017.10.17T08.15.32.000000000_blue = c(678L, 769L, 804L, 797L, 797L, 711L), t2017.10.22T08.21.34.000000000_blue = c(3146L, 3134L, 3128L, 3160L, 3160L, 3118L), t2017.10.27T08.23.27.000000000_blue = c(612L, 697L, 721L, 697L, 697L, 708L), t2017.11.01T08.24.41.000000000_blue = c(941L, 982L, 1001L, 1010L, 1010L, 999L), t2017.11.06T08.20.50.000000000_blue = c(670L, 824L, 836L, 824L, 824L, 785L), t2017.11.11T08.27.40.000000000_blue = c(720L, 817L, 839L, 807L, 807L, 801L), t2017.11.16T08.16.16.000000000_blue = c(9824L, 9744L, 9792L, 9744L, 9744L, 9536L), t2017.11.21T08.17.00.000000000_blue = c(749L, 841L, 838L, 738L, 738L, 830L), t2017.11.26T08.25.13.000000000_blue = c(735L, 863L, 832L, 713L, 713L, 899L), t2017.12.01T08.20.22.000000000_blue = c(674L, 836L, 816L, 800L, 800L, 771L), t2017.12.06T08.19.42.000000000_blue = c(2742L, 2770L, 2742L, 2762L, 2762L, 2798L), t2017.12.11T08.19.00.000000000_blue = c(582L, 745L, 734L, 654L, 654L, 743L), t2017.12.16T08.23.19.000000000_blue = c(926L, 1054L, 1001L, 946L, 946L, 1054L), t2017.12.21T08.20.53.000000000_blue = c(7432L, 7484L, 7456L, 7404L, 7404L, 7484L), t2017.12.26T08.20.39.000000000_blue = c(629L, 724L, 762L, 738L, 738L, 731L), t2017.12.31T08.20.04.000000000_blue = c(667L, 765L, 762L, 718L, 718L, 765L), t2017.01.05T08.25.12.000000000_green = c(5224L, 5196L, 5208L, 5152L, 5152L, 5172L), t2017.01.15T08.26.22.000000000_green = c(837L, 938L, 907L, 858L, 858L, 927L), t2017.01.25T08.21.38.000000000_green = c(735L, 808L, 770L, 770L, 770L, 836L), t2017.02.04T08.27.09.000000000_green = c(5424L, 5492L, 5488L, 5536L, 5536L, 5832L), t2017.02.14T08.27.29.000000000_green = c(3050L, 3094L, 3108L, 3228L, 3228L, 2900L), t2017.02.24T08.23.38.000000000_green = c(2664L, 2450L, 2598L, 2646L, 2646L, 2340L), t2017.03.06T08.24.47.000000000_green = c(702L, 735L, 749L, 727L, 727L, 729L), t2017.03.16T08.16.07.000000000_green = c(632L, 685L, 708L, 685L, 685L, 703L), t2017.03.26T08.22.43.000000000_green = c(744L, 841L, 806L, 809L, 809L, 818L), t2017.04.05T08.23.06.000000000_green = c(1030L, 1036L, 1044L, 1050L, 1050L, 1040L), t2017.04.15T08.23.45.000000000_green = c(634L, 720L, 708L, 699L, 699L, 751L), t2017.04.25T08.23.17.000000000_green = c(619L, 698L, 716L, 723L, 723L, 687L), t2017.05.05T08.23.45.000000000_green = c(1340L, 1368L, 1374L, 1404L, 1404L, 1354L), t2017.05.15T08.28.11.000000000_green = c(525L, 633L, 619L, 612L, 612L, 626L), t2017.05.25T08.23.46.000000000_green = c(1042L, 1118L, 1078L, 1028L, 1028L, 1148L), t2017.06.04T08.25.50.000000000_green = c(655L, 778L, 783L, 769L, 769L, 813L), t2017.06.14T08.28.06.000000000_green = c(772L, 829L, 838L, 810L, 810L, 822L), t2017.06.24T08.26.00.000000000_green = c(741L, 888L, 848L, 798L, 798L, 865L), t2017.07.04T08.23.42.000000000_green = c(867L, 918L, 912L, 846L, 846L, 946L), t2017.07.09T08.23.09.000000000_green = c(936L, 1001L, 1012L, 972L, 972L, 985L), t2017.07.19T08.23.43.000000000_green = c(848L, 911L, 925L, 915L, 915L, 903L), t2017.07.24T08.23.44.000000000_green = c(855L, 907L, 947L, 913L, 913L, 937L), t2017.07.29T08.26.12.000000000_green = c(1096L, 1106L, 1134L, 1150L, 1150L, 1116L), t2017.08.03T08.26.43.000000000_green = c(987L, 1072L, 1040L, 1030L, 1030L, 1021L), t2017.08.08T08.23.41.000000000_green = c(996L, 1011L, 1001L, 1011L, 1011L, 1032L), t2017.08.13T08.23.44.000000000_green = c(1006L, 1100L, 1082L, 1078L, 1078L, 1092L), t2017.08.18T08.25.16.000000000_green = c(977L, 1034L, 1032L, 976L, 976L, 1020L), t2017.08.23T08.22.22.000000000_green = c(976L, 1054L, 1044L, 985L, 985L, 1072L), t2017.08.28T08.28.01.000000000_green = c(1162L, 1176L, 1188L, 1150L, 1150L, 1200L), t2017.09.02T08.23.42.000000000_green = c(1136L, 1152L, 1158L, 1176L, 1176L, 1130L), t2017.09.07T08.23.30.000000000_green = c(1122L, 1166L, 1174L, 1194L, 1194L, 1162L), t2017.09.12T08.23.35.000000000_green = c(1158L, 1170L, 1168L, 1180L, 1180L, 1146L), t2017.09.22T08.23.38.000000000_green = c(3304L, 3218L, 3072L, 3580L, 3580L, 4148L), t2017.09.27T08.16.41.000000000_green = c(1172L, 1228L, 1242L, 1224L, 1224L, 1172L), t2017.10.02T08.17.41.000000000_green = c(1148L, 1224L, 1220L, 1200L, 1200L, 1164L), t2017.10.07T08.24.51.000000000_green = c(1120L, 1164L, 1160L, 1148L, 1148L, 1114L), t2017.10.12T08.24.39.000000000_green = c(1124L, 1158L, 1166L, 1144L, 1144L, 1090L), t2017.10.17T08.15.32.000000000_green = c(1092L, 1190L, 1180L, 1154L, 1154L, 1146L), t2017.10.22T08.21.34.000000000_green = c(3140L, 3124L, 3142L, 3134L, 3134L, 3096L), t2017.10.27T08.23.27.000000000_green = c(1064L, 1104L, 1116L, 1078L, 1078L, 1098L), t2017.11.01T08.24.41.000000000_green = c(1298L, 1310L, 1344L, 1344L, 1344L, 1318L), t2017.11.06T08.20.50.000000000_green = c(1114L, 1240L, 1220L, 1164L, 1164L, 1212L), t2017.11.11T08.27.40.000000000_green = c(1182L,1278L, 1278L, 1192L, 1192L, 1284L), t2017.11.16T08.16.16.000000000_green = c(8872L, 8728L, 8816L, 8904L, 8904L, 8600L), t2017.11.21T08.17.00.000000000_green = c(1166L, 1268L, 1250L, 1158L, 1158L, 1260L), t2017.11.26T08.25.13.000000000_green = c(1138L, 1272L, 1288L, 1240L, 1240L, 1278L)), row.names = c(NA, 6L), class = "data.frame") `
I have a dataframe of dates for per specific bands with 534 column headers as follow:
"t2017-12-31T08:20:04.000000000_red_edge_3"
"t2017-02-04T08:27:09.000000000_nir_1"
"t2017-12-31T08:20:04.000000000_swir_2"
Now, I want to remove everything and only remain with the date and the band name e.g in column header one and two, I want to only remain with
"2017-12-31_red_edge_3"
"2017-02-04_nir_1"
I have about 534 columns and most characters are not consistent because each date time is different and more band examples not similar to what is shown here for all the 534 records, so I was only able to remove repetitive characters such as "T08", ":","t" and "000000000" which are available in all the columns. How do I remove the values between the date and the band characters when they vary per each column and so I cannot use :
for ( col in 1:ncol(Bands_reflectance_2017[5:534])){
colnames(Bands_reflectance_2017)[5:534] <- sub(".000000000", "", colnames(Bands_reflectance_2017)[5:534]) #Remove .000000000
}
etc
Also at the end of the day, I want to replace each bandname with a band coding system such as assign "nir-1" as "B8" and "12" as the month of "December" so that for example my first and second column header reads:
B7_December31 | B8_February02 |
---|---|
Cell 1 | Cell 2 |
Cell 3 | Cell 4 |
"B7_December31", "B8_February02" which are better naming to run in a random forest. Because I am running into problems of
Error in eval(predvars, data, env) : object '"t2017-12-31T08:20:04.000000000_red_edge_3"' not found
if I keep the naming convention in the example
I have the following column header names in my dataframe (Bands_reflectance_2017) of 534 columns :
"t2017-01-25T08:21:38.000000000_blue" | "t2017-08-23T08:22:22.000000000_green" |
---|---|
Cell 1 | Cell 2 |
Cell 3 | Cell 4 |
I want to remove everything except the date and band name e.g "2017_01_25_blue"
I tried:
for ( col in 1:ncol(Bands_reflectance_2017[5:534])){
colnames(Bands_reflectance_2017)[5:534] <- sub("T08", "", colnames(Bands_reflectance_2017)[5:534]) #Remove T08
But as some of the characters I want to remove are unique per each 534 columns, I am not sure how to remove them
I expect this at the end of the day:
2017_01_25_blue | 2017_08_23_green |
---|---|
Cell 1 | Cell 2 |
Cell 3 | Cell 4 |
The later
"B2_December31", B3_August23 |
---|
Cell 1 |
Cell 3 |
I also tried this :
substr(colnames(Bands_Reflectance_2017[2:335]),2,11)
What is the best way to do it? I am fairly new to programming and to r.
CodePudding user response:
Thanks for sharing your code and data. Most people won't download random files. In the future you can share data with dput(data)
or a smaller version with dput(head(data))
.
library(stringr)
library(lubridate)
# Using the data frame that you provided with dput, which I call "df1" here
# You'll probably have to adjust the numbers between the [] because your
# data frame is vastly different from what I have and I'm not sure I have
# the write number, but since you said 534 columns, I'm using that.
df1 <- names(df1)[1:534]
band_names <- rep(NA, length(df1))
# This is messy. I'm sure someone who knows stringr or
# regex better has a neater way to do this.
# str_locate will find positions in a string and return the numeric value of the position
# str_sub uses positions to pull substrings
# gsub replaces patterns
# What this does is find the positions of the dates or labels,
# pulls out the substring, replaces things not needed
# (like "-" I used to mark positions), changed the number for date
# to something numeric so that month() can be switched from number to text.
for(i in 1:length(df1)) {
band_names[i] <- paste0(as.character(month(as.numeric(gsub("\\.","",
str_sub(df1[i],str_locate(df1[i],"\\.[0-9]{2}")))),
label=T, abbr = F)),gsub("T","",str_sub(df1[i],str_locate(df1[i],
"\\.[0-9]{2}T"))),"_",
str_sub(df1[i],str_locate(df1[i],"[a-z]{3,}. ")))}
# You can look at the results
band_names
[1] "Dec-12_red_edge_3" "Feb-02_nir_1" "Dec-12_swir_2"
# Split up band_names to replace the band label with number
band_out <- str_sub(band_names, 7)
band_stay <- str_sub(band_names, 1, 6)
# Made data frame up for the few example lines. I'm not downloading the CSV and I'm not going to find out the actual band names, labels, and numbers.
fake_bands <- data.frame(label = c("red_edge_3", "nir_1", "swir_2"), number = c("b1","b3","b2"))
# Change out labels for the numbers
band_replace <- fake_bands[match(band_out, fake_bands$label), "number"]
new_names <- paste0(band_stay, band_replace)
new_name
[1] "Dec-12_b1" "Feb-02_b3" "Dec-12_b2"
# Again, you might have to adjust the numbers in []
names(df1)[1:534] <- new_names
You're going to have to expand/replace the fake_bands
data frame I made here with a data frame that has two columns. One column should have the labels, like "red_edge_3", and the other should have the appropriate band number.