Home > Software engineering >  Big Decimal String to Binary String
Big Decimal String to Binary String

Time:11-22

How to convert big decimal stored as string into a binary string, eg:

'31314232352342341239081370934702357023470' => '10101101110101000011001101011101101001100010100111111100001011'

CodePudding user response:

As I noted in a comment, making a naïve implementation of a function like this isn't at all difficult -- you merely need to make a routine that does what you would do yourself using pen and paper.

So, using long division, I devised the following (rather inefficient) code:

function DecStrToBinStr(const S: string): string;

  procedure DivMod2Str(const S: string; out AQuotient: string; out ARemainder: Integer);

    function Digit(C: Char): Integer;
    begin
      Result := Ord(C) - Ord('0');
    end;

    function DigitChar(D: Integer): Char;
    begin
      Result := Char(Ord('0')   D);
    end;

    function NumDig(AIndex: Integer): Integer;
    begin
      Result := Digit(S[AIndex]);
    end;

  begin

    SetLength(AQuotient, S.Length);
    ARemainder := 0;

    if AQuotient = '' then
      Exit;

    var Q := NumDig(1);
    for var i := 1 to S.Length do
    begin
      if not InRange(Ord(S[i]), Ord('0'), Ord('9')) then
        raise Exception.Create('Invalid decimal number.');
      ARemainder := Ord(Odd(Q));
      Q := Q div 2;
      AQuotient[i] := DigitChar(Q);
      if i < S.Length then
        Q := 10*ARemainder   NumDig(Succ(i));
    end;

    while (AQuotient.Length > 1) and (AQuotient[1] = '0') do
      Delete(AQuotient, 1, 1);

  end;

const
  BitStrs: array[Boolean] of Char = ('0', '1');

begin

  if S = '' then
    Exit('');

  var L := TList<Boolean>.Create;
  try
    var T := S;
    var R := 0;
    repeat
      var Q: string;
      DivMod2Str(T, Q, R);
      L.Add(R = 1);
      T := Q;
    until T = '0';
    SetLength(Result, L.Count);
    for var i := 1 to Result.Length do
      Result[i] := BitStrs[L[L.Count - i]];
  finally
    L.Free;
  end;

end;

It is correct, but certainly not the most efficient implementation.

For instance, according to this routine, the decimal number

30347386718195039666223058436176179389328210368626940040845691245726092139866985
13829421448918578266312873948380914263473944921553341261772026398226410631065331
7294059719089452218

is written as

11101111101001011110010001001010010100100011011010110111111000101000001111010111
00001000000111111000010100100001111100011101001010101110100101101001110100100100
01001010100110001111110111100001100111111111110101111011001001010011101000010010
00001100000001110100000101111111101111011010010011101000001000100111111010100011
10110000001010011110000101101101011101101010101011100010000011000111110010100001
01011010111110101010111100011110100100010110011110011001000100000111001110111010
01110101010100100010100001011101101001011110010110000100111010001101111000100011
111010110000001111111010010111010

in binary.

  • Related