Below is the sample data. The goal is to first create a column that contains the total employment for that quarter. Second is to create a new column that shows the relative share for the area. Finally, the last item (and one which is vexing me) is to calculate whether the total with suppress = 0 represents over 50% of the total. I can do this in excel easily but trying to this in R and so have it be something that I can replicate year after year.
desired result is below
area <- c("001","005","007","009","011","013","015","017","019","021","023","027","033","001","005","007","009","011","013","015","017","019","021","023","027","033")
year <- c("2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021","2021")
qtr <- c("01","01","01","01","01","01","01","01","01","01","01","01","01","02","02","02","02","02","02","02","02","02","02","02","02","02")
employment <- c(2,4,6,8,11,10,12,14,16,18,20,22,30,3,5,8,9,12,9,24,44,33,298,21,26,45)
suppress <- c(0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0)
testitem <- data.frame(year,qtr, area, employment, suppress)
For the first quarter of 2021, the total is 173. If you only take suppress = 1 into account, that is only 24 of 173 hence the TRUE in the 50 percent column. If these two values summed up to 173/2 or greater than you would have it say FALSE. For the second quarter, the suppress = 1 accounts for 310 of the total of 537 and so is over 50% of the total.
For the total column, I am showing the computation or ingredients. Ideally, it would show a value such as .0115 in place of 2/173.
year qtr area employment suppress total 50percent
2021 01 001 2 0 =2/173 TRUE
2021 01 005 4 0 =4/173 TRUE
.....
2021 02 001 3 0 =3/537 FALSE
2021 02 005 5 0 =5/537 FALSE
CodePudding user response:
For example:
library(dplyr)
testitem %>%
group_by(year, qtr) %>%
mutate(
total = employment / sum(employment),
over_half = sum(employment[suppress == 0]) > (0.5 * sum(employment))
)
Gives:
# A tibble: 26 × 7 # Groups: year, qtr [2] year qtr area employment suppress total over_half <chr> <chr> <chr> <dbl> <dbl> <dbl> <lgl> 1 2021 01 001 2 0 0.0116 TRUE 2 2021 01 005 4 0 0.0231 TRUE 3 2021 01 007 6 0 0.0347 TRUE 4 2021 01 009 8 1 0.0462 TRUE 5 2021 01 011 11 0 0.0636 TRUE 6 2021 01 013 10 0 0.0578 TRUE 7 2021 01 015 12 0 0.0694 TRUE 8 2021 01 017 14 0 0.0809 TRUE 9 2021 01 019 16 1 0.0925 TRUE 10 2021 01 021 18 0 0.104 TRUE # … with 16 more rows # ℹ Use `print(n = ...)` to see more rows
CodePudding user response:
I think you'll want to use group_by()
and mutate()
here.
library(dplyr)
testitem |>
## grouping by year and quarter
## sums will be calculated over areas
group_by(year, qtr) |>
## this could be more terse, but gets the job done.
mutate(total_sum = sum(employment),
## This uses the total_sum column that was just created
total_prop = employment/total_sum,
## leveraging the 0,1 coding of suppress
suppress_sum = sum(suppress * employment),
suppress_prop = suppress_sum/total,
fifty = (1-suppress_prop) > 0.5)