I have this dataframe and I want to make a calculation depending on a condition, like below:
count prep result
0 10 100
10 100 100
I wanto to create a new column evaluated
that is:
if df['count']==0:
df['evaluated'] = df['result'] / df['prep']
else:
df['evaluated'] = df['result'] / df['count']
expected result is:
count prep result evaluated
0 10 100 10
100 10 100 1
What's the best way to do it? My real dataframe has 30k rows.
CodePudding user response:
df['evaluated'] = df['result'].div(df['prep'].where(df['count'].eq(0), df['count']))
Or:
df['evaluated'] = df['result'].div(df['count'].mask(df['count'].eq(0), df['prep']))
Output (assuming there was an error in the provided input):
count prep result evaluated
0 0 10 100 10.0
1 100 10 100 1.0
CodePudding user response:
You can also use np.where
from numpy
to do that:
df['evaluated'] = np.where(df['count'] == 0,
df['result'] / df['prep'], # == 0
df['result'] / df['count']) # != 0
Performance (not really significant) over 30k rows:
>>> %timeit df['result'].div(df['prep'].where(df['count'].eq(0), df['count']))
652 µs ± 12.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> %timeit df['result'].div(df['count'].mask(df['count'].eq(0), df['prep']))
638 µs ± 1.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> %timeit np.where(df['count'] == 0, df['result'] / df['prep'], df['result'] / df['count'])
462 µs ± 1.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)