I am trying to fit a Gaussian function to my dataset using scipy's curve_fit() function and have failed to get the function to fit. I tried the same using some other tools like Matlab and the function readily fits. Could someone please help me out here? I am not sure what I am doing wrong. Thanks a lot for any help :)
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
x_data = [12, 34, 56]
y_data = [1e-10, 1e-3, 1e-10]
def func(xdata, a, b, c):
return a*np.exp(-(xdata - b)**2/(2*c**2))
popt,_ = curve_fit(func, x_data, y_data)
x_fit = np.linspace(0,100, 100)
y_fit = func(x_fit, *popt)
plt.scatter(x_data, y_data)
plt.plot(x_fit,y_fit)
plt.show()
The above is the code I have tried and I get a bell-curve that is refusing to move from mean point of 0 (the bell part is over x=0).
CodePudding user response:
It fits fine so long as you give it sane initial conditions:
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
x_data = [12, 34, 56]
y_data = [1e-10, 1e-3, 1e-10]
def func(xdata: np.ndarray, a: float, b: float, c: float) -> np.ndarray:
return a*np.exp(-(xdata - b)**2/(2*c**2))
popt, _ = curve_fit(f=func, xdata=x_data, ydata=y_data, p0=[1e-3, 34, 10])
print(popt)
x_fit = np.linspace(0, 100, 100)
y_fit = func(x_fit, *popt)
plt.scatter(x_data, y_data)
plt.plot(x_fit,y_fit)
plt.show()
[1.00000000e-03 3.40000000e 01 3.87481363e 00]