I'm trying to learn how the convolution layer works in neural networks. I found two different related posts for a similar issue and tried the suggestions, but could not get around.
- Keras dimensionality in convolutional layer mismatch
- ValueError: Input 0 is incompatible with layer conv_1: expected ndim=3, found ndim=4
import tensorflow as tf
model_valid = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(10,)),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Conv1D(16, kernel_size=(2), activation='relu', padding='same'),
tf.keras.layers.MaxPooling1D(pool_size=(4), strides=3, padding='valid'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1, activation='softmax')
])
model_valid.summary()
I am receiving an incompatiblity issue as Input 0 of layer conv1d_37 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 16]
. The issue arises when building up the convolution layer.
CodePudding user response:
The input's shape before the first Conv1D is incorrect. As user spb suggested, the input to Conv1D must be a 3D tensor, though removing the flatten layer (as suggested) won't fix the problem.
Instead, simply add an extra dimension after the first Dense layer.
import tensorflow as tf
model_valid = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(10,)),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Reshape((16, 1)), # ADD THIS LINE OF CODE
tf.keras.layers.Conv1D(16, kernel_size=(2), activation='relu', padding='same'),
tf.keras.layers.MaxPooling1D(pool_size=(4), strides=3, padding='valid'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1, activation='softmax')
])
model_valid.summary()
Now the model summary is:
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten_4 (Flatten) (None, 10) 0
_________________________________________________________________
dense_4 (Dense) (None, 16) 176
_________________________________________________________________
reshape (Reshape) (None, 16, 1) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 16, 16) 48
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 5, 16) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 80) 0
_________________________________________________________________
dense_5 (Dense) (None, 1) 81
=================================================================
Total params: 305
Trainable params: 305
Non-trainable params: 0
_________________________________________________________________
CodePudding user response:
Input to Conv1D layer must be 3D Tensor (batch_size, steps, input_dim). Flattening the tensor will convert input into 2D tensor (batch_size, input_dim). Try removing the Flatten layer.