I got the following (unconstrained quadratic objective) defined borrowing matrices and vectors from the Eigen-library:
#ifndef QP_UNCON_HPP
#define QP_UNCON_HPP
#include "EigenDataTypes.hpp"
template <int Nx>
struct objective
{
private:
const spMat Q;
const Vec<Nx> c;
public:
objective(spMat Q_, Vec<Nx> c_) : Q(Q_), c(c_) {}
inline scalar operator()(const Vec<Nx> &x)
{
return (.5 * x.transpose() * Q * x c.transpose() * x);
}
inline Vec<Nx> Eval_grad(const Vec<Nx> &x)
{
return Q.transpose() * x;
}
inline Mat<Nx, Nx> Eval_hessian(const Vec<Nx> &x)
{
return Q;
}
};
This makes it possible to evaluate the objective at different states x:
objective<2> f(Q, c);
Vec<2> x {0,1};
#Objective-value
f(x);
#gradient:
f.Eval_grad(x);
#hessian:
f.Eval_hessian(x);
I want to create a new struct Phi
(for line search) where a scalar
is used as input arguments instead, something like this:
p_objective<2> Phi(f, x0, p);
double alpha = 0.9;
#Objective-value
Phi(alpha);
#gradient:
Phi.Eval_grad(alpha);
#hessian:
Phi.Eval_hessian(alpha);
Which corresponds to this:
#Objective-value
f(x alpha*p);
#gradient:
f.Eval_grad(x alpha*p);
#hessian:
f.Eval_hessian(x alpha*p);
This would be simple for a single function using lambda functions, but are there smooth ways of 'lambdifying' a functor struct?
EigenDataTypes.hpp
#ifndef EIGENDATATYPES_H
#define EIGENDATATYPES_H
#include <Eigen/Dense>
#include <Eigen/SparseCore>
#ifdef CSOLVER_USE_SINGLE
typedef float real_t;
#else
typedef double real_t;
#endif
using scalar = Eigen::Matrix<double, 1, 1>;
template <int Rows>
using Vec = Eigen::Matrix<double, Rows, 1>;
template <int Rows, int Cols>
using Mat = Eigen::Matrix<double, Rows, Cols>;
using spVec = Eigen::SparseVector<double>;
using spMat = Eigen::SparseMatrix<double>;
using Triplet = Eigen::Triplet<double>;
#endif
1D-example without Eigen-library:
struct objective_1D
{
private:
const double Q;
const double c;
public:
objective_1D(double Q_, double c_) : Q(Q_), c(c_) {}
double operator()(const double &x)
{
return (.5 * x * Q * x c* x);
}
double Eval_grad(const double &x)
{
return Q * x;
}
double Eval_hessian(const double &x)
{
return Q;
}
};
TLDR;
I want to create a functor struct p_objective
that works as a lambda for struct objective:
p_objective = [&x, &p] (double alpha) (return objective-methods at (x alpha*p))
CodePudding user response:
I want to create a functor struct
p_objective
that works as a lambda for struct objective.
If you have already written the objective
, you can also similarly make a p_objective
. Following is an example.
Here is the (demo)
template <int Nx> class p_objective
{
objective<Nx> f;
const spMat x;
const Vec<Nx> p;
public:
explicit p_objective(const objective<Nx>& ob, spMat const& Q_, const Vec<Nx>& c_)
: f{ ob }
, x{ Q_ }
, p{ c_ }
{}
scalar operator()(const double alpha)
{
return f(x (alpha*p));
}
Vec<Nx> Eval_grad(const double alpha)
{
return f.Eval_grad(x alpha * p);
}
Mat<Nx, Nx> Eval_hessian(const double alpha)
{
return f.Eval_hessian(x alpha * p);
}
};
Since both the objective
and the p_objective
have member functions, (i.e. Eval_grad
, and Eval_hessian
), it will be more readable, when they are normal classes, than a lambda function.