I have a two-dimensional (2D) array that contains many one-dimensional (1D) arrays of random boolean values.
import numpy as np
def random_array_of_bools():
return np.random.choice(a=[False, True], size=5)
boolean_arrays = np.array([
random_array_of_bools(),
random_array_of_bools(),
... so on
])
Assume that I have three arrays:
[True, False, True, True, False]
[False, True, True, True, True]
[True, True, True, False, False]
This is my desired result:
[False, False, True, False, False]
How can I achieve this with NumPy?
CodePudding user response:
Use min
with axis=0
:
>>> boolean_array.min(axis=0)
array([False, False, True, False, False])
>>>
CodePudding user response:
Use .all:
import numpy as np
arr = np.array([[True, False, True, True, False],
[False, True, True, True, True],
[True, True, True, False, False]])
res = arr.all(0)
print(res)
Output
[False False True False False]
CodePudding user response:
try numpy bitwise_and =>
out_arr = np.bitwise_and(np.bitwise_and(in_arr1, in_arr2),in_arr3)