I've been reading and trying for hours... I have a df like this:
BTC/USDT ... MOVR/USDT
symbol BTC/USDT ... MOVR/USDT
timestamp 1636391714488 ... 1636391711813
datetime 2021-11-08T17:15:14.488Z ... 2021-11-08T17:15:11.813Z
close 65826.8800000000 ... 403.4000000000
percentage 6.0380000000 ... 4.4540000000
baseVolume 50096.1040200000 ... 111340.7360000000
quoteVolume 3255082473.3960447311 ... 46765144.8117000014
[7 rows x 349 columns]
I'm trying to drop columns where the 'quoteVolume is less than 1000000
I got this far...
a = df.loc['quoteVolume'] > 10000000
print(a)
BTC/USDT True
ETH/USDT True
BNB/USDT True
BCC/USDT False
NEO/USDT True
...
AUCTION/USDT False
DAR/USDT True
BNX/USDT False
RGT/USDT False
MOVR/USDT True
Name: quoteVolume, Length: 349, dtype: bool
CodePudding user response:
A bool mask does the trick:
df.loc[:,df.loc[('quoteVolume',:]>1000000)]
CodePudding user response:
Finally after 9hrs of trying.
a = df.loc[:,df.loc['quoteVolume'] > 1000000]
print(a)