Below is my DF
df= pd.DataFrame({'col1': ['[7]', '[30]', '[0]', '[7]'], 'col2': ['[0%, 7%]', '[30%]', '[30%, 7%]', '[7%]']})
col1 col2
[7] [0%, 7%]
[30] [30%]
[0] [30%, 7%]
[7] [7%]
The aim is to check if col1 value is contained in col2 below is what I've tried
df['test'] = df.apply(lambda x: str(x.col1) in str(x.col2), axis=1)
Below is the expected output
col1 col2 col3
[7] [0%, 7%] True
[30] [30%] True
[0] [30%, 7%] False
[7] [7%] True
CodePudding user response:
You can extract the numbers on both columns and join
, then check if there is at least one match per id using eval
groupby
any
:
(df['col2'].str.extractall('(?P<col2>\d )').droplevel(1)
.join(df['col1'].str[1:-1])
.eval('col2 == col1')
.groupby(level=0).any()
)
output:
0 True
1 True
2 False
3 True
CodePudding user response:
One approach:
import ast
# convert to integer list
col2_lst = df["col2"].str.replace("%", "").apply(ast.literal_eval)
# check list containment
df["col3"] = [all(bi in a for bi in b) for a, b in zip(col2_lst, df["col1"].apply( ast.literal_eval)) ]
print(df)
Output
col1 col2 col3
0 [7] [0%, 7%] True
1 [30] [30%] True
2 [0] [30%, 7%] False
3 [7] [7%] True
CodePudding user response:
Use Series.str.extractall
for get numbers, reshape by Series.unstack
, so possible compare by DataFrame.isin
with DataFrame.any
:
df['test'] = (df['col2'].str.extractall('(\d )')[0].unstack()
.isin(df['col1'].str.strip('[]'))
.any(axis=1))
print (df)
col1 col2 test
0 [7] [0%, 7%] True
1 [30] [30%] True
2 [0] [30%, 7%] False
3 [7] [7%] True
CodePudding user response:
You can also replace the square brackets with word boundaries \b
and use re.search
like in
import re
#...
df.apply(lambda x: bool(re.search(x['col1'].replace("[",r"\b").replace("]",r"\b"), x['col2'])), axis=1)
# => 0 True
# 1 True
# 2 False
# 3 True
# dtype: bool
This will work because \b7\b
will find a match in [0%, 7%]
as 7
is neither preceded nor followed with letters, digits or underscores. There won't be any match found in [30%, 7%]
as \b0\b
does not match a zero after a digit (here, 3
).