Home > database >  How to fix error in tidy for building table with flextable
How to fix error in tidy for building table with flextable

Time:11-09

I've created the followinf list models

models_list_1 <- data_long %>%
  group_by(signals) %>%
  do(fit = lmerTest::lmer(value ~ COND*SES   (1 |ID), data = .)) %>% 
  pull(fit) %>% 
  lapply(., function(x) summary(x))

And for example the statistics reported into the first object are the following ones:

> models_list_1[[1]]
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: value ~ COND * SES   (1 | ID)
   Data: .

REML criterion at convergence: 1172.7

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.43364 -0.60624  0.01405  0.54498  2.38710 

Random effects:
 Groups   Name        Variance Std.Dev.
 ID       (Intercept) 10.87    3.297   
 Residual              8.06    2.839   
Number of obs: 228, groups:  ID, 27

Fixed effects:
                 Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)        4.0610     0.8451  64.5397   4.805 9.60e-06 ***
CONDNEG-NOC       -0.6577     0.7874 192.5862  -0.835   0.4046    
CONDNEU-NOC       -4.0998     0.7874 192.5862  -5.207 4.91e-07 ***
SESR              -0.7276     0.7988 193.0113  -0.911   0.3635    
SESV              -1.5098     0.7988 193.0113  -1.890   0.0602 .  
CONDNEG-NOC:SESR  -0.8070     1.1246 192.5862  -0.718   0.4739    
CONDNEU-NOC:SESR   1.0970     1.1246 192.5862   0.975   0.3306    
CONDNEG-NOC:SESV   1.2112     1.1246 192.5862   1.077   0.2828    
CONDNEU-NOC:SESV   2.3398     1.1246 192.5862   2.081   0.0388 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
                 (Intr) CONDNEG-NOC CONDNEU-NOC SESR   SESV   CONDNEG-NOC:SESR
CONDNEG-NOC      -0.466                                                       
CONDNEU-NOC      -0.466  0.500                                                
SESR             -0.462  0.493       0.493                                    
SESV             -0.462  0.493       0.493       0.488                        
CONDNEG-NOC:SESR  0.326 -0.700      -0.350      -0.704 -0.345                 
CONDNEU-NOC:SESR  0.326 -0.350      -0.700      -0.704 -0.345  0.500          
CONDNEG-NOC:SESV  0.326 -0.700      -0.350      -0.345 -0.704  0.490          
CONDNEU-NOC:SESV  0.326 -0.350      -0.700      -0.345 -0.704  0.245          
                 CONDNEU-NOC:SESR CONDNEG-NOC:SESV
CONDNEG-NOC                                       
CONDNEU-NOC                                       
SESR                                              
SESV                                              
CONDNEG-NOC:SESR                                  
CONDNEU-NOC:SESR                                  
CONDNEG-NOC:SESV  0.245                           
CONDNEU-NOC:SESV  0.490            0.500

If I'm interested to report iterativey each **model coefficients (i.e. models_lists[[1]]$coefficients)**contained in each of the model into the list in a table that could be readible into a word/pdf doc created via RMarkdown, which package I shoulòd use? How could I set command lines?

I'm keeping on trying with this code, but I have no succes at all:

models_list_1 %>% 
    map(~.x %>% map( ~broom::tidy(.x) %>% flextable::flextable()))

Since I get this error back

Error: No tidy method for objects of class character

Here the dataset

> dput(head(data_long,300))
structure(list(ID = c("01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"01", "01", "01", "01", "01", "01", "01", "01", "01", "01", "01", 
"02", "02", "02", "02", "02", "02", "02", "02", "02", "02", "02", 
"02", "02", "02", "02", "02", "02", "02", "02", "02", "02", "02", 
"02", "02", "02", "02", "02", "02", "02", "02", "02", "02", "02", 
"02", "02", "02", "02", "02", "02", "02", "02", "02", "02", "02", 
"02", "02", "02", "02", "02", "02", "02", "02", "02", "02", "02", 
"02", "02", "02", "02", "02", "02", "02", "02", "02", "02", "02", 
"02", "02", "02", "02", "02", "02", "02", "02", "02", "02", "02", 
"02", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", 
"04", "04", "04", "04", "04", "04", "04"), GR = c("RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", 
"RP"), SES = c("L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", 
"V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", 
"V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", 
"V", "V", "V", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", "L", 
"L", "L", "L", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", "R", 
"R", "R", "R", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", 
"V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", "V", 
"V", "V", "V", "V"), COND = c("NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", "NEU-NOC", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", "NEG-CTR", 
"NEG-CTR", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", "NEG-NOC", 
"NEG-NOC", "NEG-NOC", "NEU-NOC"), signals = c("P3(400-450).FCz", 
"P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz", "P3(400-450).Cz", "P3(400-450).Pz", "LPPearly(500-700).FCz", 
"LPPearly(500-700).Cz", "LPPearly(500-700).Pz", "LPP1(500-1000).FCz", 
"LPP1(500-1000).Cz", "LPP1(500-1000).Pz", "LPP2(1000-1500).FCz", 
"LPP2(1000-1500).Cz", "LPP2(1000-1500).Pz", "LPP2(1000-1500).POz", 
"P3(400-450).FCz"), value = c(-13.733750856001, -9.75024624896264, 
2.65626156135631, -11.2145748677083, -8.14861856277773, 3.4315211013568, 
-7.774797181711, -5.0379636708446, 4.67200616533014, -0.397250087672501, 
2.91913936481813, 8.38141924882334, 9.61455213192824, -11.0706676917232, 
-8.42427447113084, 3.37360619561252, -13.9481657323772, -11.7645758007163, 
-1.55179922542943, -8.40872060176111, -6.36865552801825, 1.75888442936359, 
1.01519755373062, 1.85489998202138, 4.88842858528025, 7.21299011910717, 
-8.4719202003519, -5.61886494275071, 5.4043480635031, -12.0047623683783, 
-9.16726244915301, 1.13509020104859, -7.03235376576925, -4.54670193355435, 
2.49276476951357, -1.17300033366376, 0.694393606954545, 5.0594399581601, 
6.1861244061312, -5.04318152659785, 0.73152672768007, 19.5226358864568, 
-4.24372139176794, 0.918751423320568, 16.3120391015512, -0.65010821749741, 
4.05493850786385, 13.8997702651793, 0.663115370014327, 3.95694572160701, 
3.88831364571248, 6.46723813995257, -6.25375875400145, 1.11453058993788, 
18.5017390789352, -7.38414465678688, -0.674372568935879, 14.1694182774958, 
-3.24350263682843, 2.67516303169366, 13.2135623121441, -1.72160165493474, 
2.36649557381131, 5.83201076558185, 7.25962635499353, -7.0474968134059, 
-2.25104720773472, 11.7844254386573, -6.61221718491095, -2.47425935490564, 
9.04781409226351, -2.84832379590422, 1.02479302810681, 9.51479768101391, 
0.0540027107377267, 2.71292196345657, 3.65113189260335, 7.92952342178602, 
-11.6312151716924, -5.16524399006139, 11.8802266972569, -11.7785042972793, 
-5.96429031525769, 8.23981597718437, -5.67295796971287, -0.774461731301161, 
9.99385579756163, -0.198736254963744, 2.96437294922766, 6.28027312932027, 
7.91468942320841, -11.1438413285935, -5.53112490175437, 12.1053426662461, 
-9.14927207125904, -5.10918437158799, 9.51261484648731, -4.3918290080777, 
-0.650009462761383, 11.1212652173052, -3.16101041766438, -2.12913230708907, 
5.24535230966772, 9.94838815736199, -3.99591470944713, 0.621502123415388, 
12.955441582096, -7.58190508537766, -2.81732229625975, 9.42367409925817, 
-2.96652960658775, 1.14010250644923, 10.6989716871958, 0.895992279831378, 
2.94619035115619, 7.68162285335806, 10.2186482048953, 8.71618523084192, 
10.0972150696175, 13.9718285231429, 14.2438131545118, 18.1277616996079, 
20.6284861844249, 12.5228696634748, 15.0856583318757, 15.4011622649207, 
9.21248347391488, 10.0673617448764, 8.55827491190151, 5.76901446016799, 
3.1567164130045, 3.29671672118792, 6.37710361710325, 10.3728637305957, 
14.0324104861749, 17.1194345279475, 10.1688421767607, 12.7218688256241, 
13.5845965959489, 4.2029104966206, 5.28032844958354, 4.37390045274906, 
1.63411653734436, 0.11779005903818, 0.527314779744752, 3.52040283490143, 
4.71555467505934, 7.88901307601169, 9.74981375898379, 4.94891653050796, 
7.04929483656524, 7.62145250862908, 5.29260474692784, 5.76317883868431, 
4.27567967018154, 2.14044069620066, 6.2230923800622, 7.48013969467974, 
13.9681839573434, 8.16263381384371, 10.9263261999576, 15.5578942384162, 
8.29234474523583, 9.71944484568732, 12.4214977980377, 4.43538787409554, 
4.54790063971537, 6.04702803069286, 4.09091078261671, 0.545039723311392, 
2.24297008138028, 8.64955428897889, 2.54754270788021, 5.40070389371842, 
10.3425870381822, 2.89989209310052, 5.19815917760722, 8.94731174966949, 
1.28346027317076, 2.16569592764593, 5.29458007289059, 5.32593378182311, 
-0.383605036065646, -0.0523505792147314, 2.80847380898547, -1.01463338713448, 
0.139150314055044, 3.41932708826405, 1.69916872833203, 2.20513206952329, 
4.10953557761617, 1.17003451023205, 1.33824716938448, 1.21234812875355, 
-0.0587064331536407, -2.10936383457265, 0.0473343786951428, 10.1644392609445, 
-6.4216236476269, -4.61042211238648, 4.05274207265641, -1.13332962482291, 
-0.20305866581144, 5.80373742668179, 3.21881665778703, 2.58426832963409, 
6.30887598671621, 6.86490468078958, 1.81064934015995, 2.78240093455642, 
13.2788201390174, -4.08374576377548, -3.5562551128714, 3.767844291789, 
0.649857280429136, 1.01053594416015, 5.74639215930458, 5.92604591551597, 
5.077230852852, 5.9614279900414, 5.26280996552585, 0.754416368133019, 
2.60057993978525, 10.5077997492971, -8.46742290376216, -6.85651693740331, 
0.326110657534835, -4.43684347222634, -2.96241685765962, 1.48762660613099, 
-2.75555354427229, -1.59699177169018, -0.609381826740468, 0.981300734684586, 
-1.2371236814317, 1.4302038359579, 13.4030666728381, -6.30908300837476, 
-2.17237957159954, 6.65839865279684, -2.31574543509226, 1.26480036715092, 
6.04018553841336, 2.18006640865321, 6.61872855398538, 3.66646157996528, 
5.0384350436334, -2.76852389876276, -0.650797837853182, 4.74014346829081, 
-6.72661142802369, -6.18867237684241, 1.17003883692158, -2.73359549382074, 
-2.00512841997728, 1.9050381096835, -0.225533814334514, -1.21696526578647, 
0.240956222277802, 0.361670119961531, 5.54144355778122, 7.81248993867768, 
11.9003140352528, -3.32736490042247, -1.77938930999718, 5.40630013085777, 
-0.38736451456005, -0.423105565152366, 6.37211228749408, 0.986467266459687, 
-0.507207892673482, 1.15053325116554, 0.393791410918138, -0.314155675382471, 
2.23100741241039, 15.0981004360619, -4.01515836011381, -1.43557366487622, 
5.06332653216481, 0.159183652691071, 1.51403741206392, 3.7899021820967, 
3.11042068112836, 3.44844607014521, 1.08242973465635, 1.07455889922813, 
0.238885648959708, 3.96990710862955, 15.4046229884164, -6.60165385653499, 
-3.14872157912645, 5.02619159395405, -1.78361184935376, 0.25571835554024, 
4.59413830322224, 2.27800090558473, 3.02403433835637, 2.99896314000211, 
1.65917850515029, 5.03749946898385)), row.names = c(NA, -300L
), class = c("tbl_df", "tbl", "data.frame"))
> 

CodePudding user response:

There is a function in the gtsummary package that will build and summarize regression models stratified by the signals column. The resulting tables can either be merged to have a wide summary of the results, or stacked to have a long summary table. The example below shows the first few rows of stacked results.

data_long %>%
  tbl_strata(
    strata = signals, 
    ~ lmerTest::lmer(value ~ COND*SES   (1 |ID), data = .x) %>%
      tbl_regression(),
    .combine_with = "tbl_stack"
  ) %>%
  as_flex_table()

enter image description here

  • Related