I have a dataframe:
import pandas as pd
df = pd.DataFrame({
'PC1' : [0.035182, 0.001649, -0.080456, 0.056460, 0.017737, -0.005615, 0.033691, 0.547145, -0.022938, -0.059511],
'PC2': [0.034898, 0.001629, -0.083374, 0.053976, 0.017603,-0.005902, 0.006798, 0.250167, -0.137955, -0.313852],
'PC3': [0.032212, 0.001591, -0.067145, 0.047500, 0.015782, -0.003079, 0.012376, 0.302485, -0.063795, -0.124957],
'PC4' : [-0.000632,0.001268,0.063346,-0.026841,-0.009790,0.029897,-0.018870,-0.449655,0.081417,-0.327028],
'PC5' : [0.020340,0.001734,-0.050830,0.008507,0.007470,0.013534,0.100008,1.083280,0.298315,0.736401],
'PC6' : [0.027012,0.001507,-0.036496,0.032256,0.012207,0.005451,0.081582,0.959821,0.337683,0.758737],
'PC7' : [0.027903,0.001625,-0.041970,0.039854,0.014676,0.002364,0.045583,0.620938,0.116647,0.214294],
'PC8' : [0.013828,-0.015836,-0.117484,-0.208933,-0.162090,-0.190467,-0.075784,-0.481607,-0.213148,-0.401169],
'PC9' : [0.009378,0.002712,-0.148531,0.040901,0.011923,-0.000078,-0.055367,-0.661758,0.242363,-0.392438],
'PC10' : [-0.002740,-0.000234,0.060118,0.027855,0.016309,0.009850,-0.108481,-1.560047,0.198750,-0.793165],
'PC11' : [-2.876278,-0.437754,0.764775,-0.627843,0.391284,0.090675,-0.007820,0.342359,0.052004,-0.200808],
'PC12' : [-2.411929,-0.414697,0.415683,-0.426348,0.302643,-0.160550,-0.051552,1.086344,-0.275267,1.219304]
})
df.head()
I applied a function 'pd.cut' to each column in the dataframe. qcut basically is Quantile-based discretization function.
cuts = []
for col in df.columns:
cuts.append(pd.qcut(df[col], 2, labels=None, retbins=False, precision=3, duplicates='raise'))
X = pd.concat(cuts, axis=1)
Then, I want to take only 2 values that are unique from each column PC1, PC2,..... PCn.
uniq = []
for i in x.columns:
uniq.append(x[i].unique())
unique = pd.DataFrame(uniq)
unique
The result look like this:
Unique variable consists 2 values in the form of (a,b]
Then I want to customize transformer class to create new categorical dummy features.
# custom transformer class to create new categorical dummy features
class WoE_Binning(BaseEstimator, TransformerMixin):
def __init__(self, X): # no *args or *kargs
self.X = X
def fit(self, X, y = None):
return self #nothing else to do
def transform(self, X):
X_new['PC1:0.00969 - 0.547'] = np.where((X['PC1'] > 0.00969) & (X['PC1'] <= 0.547), 1, 0)
X_new['PC1:-0.0815 - 0.00969'] = np.where((X['PC1'] > 0.0815 ) & (X['PC1'] <= 0.00969), 1, 0)
X_new['PC2:0.00421 - 0.25'] = np.where((X['PC2'] > 0.00421) & (X['PC2'] <= 0.25), 1, 0)
X_new['PC2:-0.315 - 0.00421'] = np.where((X['PC2'] > 0.315) & (X['PC2'] <= 0.00421), 1, 0)
X_new['PC3:0.00698 - 0.302'] = np.where((X['PC3'] > 7.071) & (X['PC3'] <= 10.374), 1, 0)
X_new['PC3:-0.126 - 0.00698'] = np.where((X['PC3'] > 10.374) & (X['PC3'] <= 13.676), 1, 0)
X_new['PC4:-0.00521 - 0.0814'] = np.where((X['PC4'] > 7.071) & (X['PC4'] <= 10.374), 1, 0)
X_new['PC4:-0.451 - -0.00521'] = np.where((X['PC4'] > 10.374) & (X['PC4'] <= 13.676), 1, 0)
X_new['PC5:0.0169 - 1.083'] = np.where((X['PC5'] > 7.071) & (X['PC5'] <= 10.374), 1, 0)
X_new['PC5:-0.0518 - 0.0169'] = np.where((X['PC5'] > 10.374) & (X['PC5'] <= 13.676), 1, 0)
X_new['PC6:-0.0375 - 0.0296'] = np.where((X['PC6'] > 7.071) & (X['PC6'] <= 10.374), 1, 0)
X_new['PC6:0.0296 - 0.96'] = np.where((X['PC6'] > 10.374) & (X['PC6'] <= 13.676), 1, 0)
X_new['PC7:0.0296 - 0.96'] = np.where((X['PC7'] > 7.071) & (X['PC7'] <= 10.374), 1, 0)
X_new['PC7:-0.043000000000000003 - 0.0339'] = np.where((X['PC7'] > 10.374) & (X['PC7'] <= 13.676), 1, 0)
X_new['PC8:-0.176 - 0.0138'] = np.where((X['PC8'] > 7.071) & (X['PC8'] <= 10.374), 1, 0)
X_new['PC8:-0.483 - -0.176'] = np.where((X['PC8'] > 10.374) & (X['PC8'] <= 13.676), 1, 0)
X_new['PC9:0.00132 - 0.242'] = np.where((X['PC9'] > 7.071) & (X['PC9'] <= 10.374), 1, 0)
X_new['PC9:-0.663 - 0.00132'] = np.where((X['PC9'] > 10.374) & (X['PC9'] <= 13.676), 1, 0)
X_new['PC10:-1.561 - 0.00481'] = np.where((X['PC10'] > 7.071) & (X['PC10'] <= 10.374), 1, 0)
X_new['PC10:0.00481 - 0.199'] = np.where((X['PC10'] > 10.374) & (X['PC10'] <= 13.676), 1, 0)
X_new['PC11:-2.877 - 0.0221'] = np.where((X['PC11'] > 7.071) & (X['PC11'] <= 10.374), 1, 0)
X_new['PC11:0.0221 - 0.765'] = np.where((X['PC11'] > 10.374) & (X['PC11'] <= 13.676), 1, 0)
X_new['PC12:-2.413 - -0.106'] = np.where((X['PC12'] > 7.071) & (X['PC12'] <= 10.374), 1, 0)
X_new['PC12:-0.106 - 1.219'] = np.where((X['PC12'] > 10.374) & (X['PC12'] <= 13.676), 1, 0)
X_new.drop(columns = ref_categories, inplace = True)
return X_new
Is there any faster and simple way to input (a,b] in unique variable and slice column name of X (PC1, PC2, ...PCn) into :
X_new['PC12:-0.106 - 1.219'] = np.where((X['PC12'] > a ) & (X['PC12'] <= b ), 1, 0)
CodePudding user response:
Given the dataframes df
and unique
you could do
X_new = pd.concat(
(
((interval.left < df[col]) & (df[col] <= interval.right))
.rename(f"{col}: {interval.left} - {interval.right}")
for i, col in enumerate(df.columns) for interval in unique.iloc[:, i]
),
axis=1
).astype(int)
or
X_new = pd.concat(
(
pd.cut(df[col], [interval.left, interval.right])
.rename(f"{col}: {interval.left} - {interval.right}")
for i, col in enumerate(df.columns) for interval in unique.iloc[:, i]
),
axis=1
).notna().astype(int)
Result:
PC1: 0.00969 - 0.547 ... PC12: -0.106 - 1.219
0 1 ... 0
1 0 ... 0
2 0 ... 1
3 1 ... 0
4 1 ... 1
5 0 ... 0
6 1 ... 1
7 0 ... 1
8 0 ... 0
9 0 ... 0
[10 rows x 24 columns]
Or build unique
with column names either this way
unique = pd.concat(
(pd.DataFrame(X[col].unique(), columns=[col]) for col in X.columns),
axis=1
)
or, if you don't need X
, this way
unique = pd.DataFrame(
{
col: pd.qcut(
df[col], 2, labels=None, retbins=False, precision=3, duplicates='raise'
).unique()
for col in df.columns
}
)
and then do
X_new = pd.concat(
(
((interval.left < df[col]) & (df[col] <= interval.right))
.rename(f"{col}: {interval.left} - {interval.right}")
for col in unique.columns for interval in unique[col]
),
axis=1
).astype(int)
etc.