Home > database >  Convert a nested dictionary with tuples as keys to a dataframe
Convert a nested dictionary with tuples as keys to a dataframe

Time:11-19

so I have the following dictionary:

user_dict = {'user1': {'id1': {('word1', 'word2'): 0.99, ('word3', 'word4'): 0.16},
                       'id2': {('word5', 'word6'): 0.73, ('word7', 'word8'): 0.69}},
             'user2': {'id3': {('word9', 'word10'): 0.59, ('word11', 'word12'): 0.13},
                       'id4': {('word13', 'word14'): 0.41, ('word14', 'word15'): 0.74}}}

For my purpose I would like to convert the nested dictionary into a pandas dataframe of the form:

  user  |  id  |  w1   |  w2   | score
---------------------------------------
  user1 |  id1 | word1 | word2 | 0.99
        |      | word3 | word4 | 0.16
        |  id2 | word5 | word6 | 0.73   and so on.

I've tried a few ways before, and this is my current solution:

df = pd.Series({(i,j): user_dict[i][j]
                      for i in user_dict.keys()
                      for j in user_dict[i].keys()}).rename_axis(['user', 'id']).reset_index(name='Col3')

So the output is:

 user  |  id  |                        Col3
 -------------------------------------------------------------------
 user1 |  id1 | {('word1', 'word2'): 0.99, ('word3', 'word4'): 0.16)}
 user1 |  id2 | {('word5', 'word6'): 0.73, ('word7', 'word8'): 0.69)}    and so on.

Can someone tell me what I am doing wrong with the last columns?

CodePudding user response:

You could use a nested list comprehension/generator:

df = pd.DataFrame(([k0, k1, *k2, d2]
                   for k0, d0  in user_dict.items()
                   for k1, d1 in d0.items()
                   for k2, d2 in d1.items()
                   ), columns=['user', 'id', 'w1', 'w2', 'score'])

output:

    user   id      w1      w2  score
0  user1  id1   word1   word2   0.99
1  user1  id1   word3   word4   0.16
2  user1  id2   word5   word6   0.73
3  user1  id2   word7   word8   0.69
4  user2  id3   word9  word10   0.59
5  user2  id3  word11  word12   0.13
6  user2  id4  word13  word14   0.41
7  user2  id4  word14  word15   0.74

CodePudding user response:

Alternatively, with fewer loops:

>>> pd.concat({k: pd.DataFrame(v) for k, v in user_dict.items()}).melt(ignore_index=False).dropna()

                    variable  value
user1 word1  word2       id1   0.99
      word3  word4       id1   0.16
      word5  word6       id2   0.73
      word7  word8       id2   0.69
user2 word9  word10      id3   0.59
      word11 word12      id3   0.13
      word13 word14      id4   0.41
      word14 word15      id4   0.74
  • Related