Home > database >  Pandas - Count number of purchase for each customer for each specific product
Pandas - Count number of purchase for each customer for each specific product

Time:12-06

Input data, transaction history in JSON files:

{"customer_id": "C1", "basket": [{"product_id": "P3", "price": 506}, {"product_id": "P4", "price": 121}], "date_of_purchase": "2018-09-01 11:09:00"}
{"customer_id": "C27", "basket": [{"product_id": "P57", "price": 154}, {"product_id": "P42", "price": 349}, {"product_id": "P47", "price": 180}], "date_of_purchase": "2021-09-06 04:52:08.505909"}
{"customer_id": "C1", "basket": [{"product_id": "P3", "price": 506}, {"product_id": "P4", "price": 121}], "date_of_purchase": "2018-10-01 11:09:00"}

Dataframe:

    customer_id                                             basket            date_of_purchase
0          C4               [{'product_id': 'P31', 'price': 26}]  2021-09-06 05:47:08.505909
1         C13              [{'product_id': 'P36', 'price': 566}]  2021-09-06 03:52:08.505909
2         C15              [{'product_id': 'P02', 'price': 839}]  2021-09-06 05:48:08.505909
3         C22             [{'product_id': 'P37', 'price': 1235}]  2021-09-05 20:52:08.505909
4         C27  [{'product_id': 'P57', 'price': 154}, {'produc...  2021-09-06 04:52:08.505909

My code to read the JSON into a dataframe:

def read_json_folder(json_folder: str):
    transactions_files = glob.glob("{}*/*.json".format(json_folder))

    return pandas.concat(pandas.read_json(tf, lines=True) for tf in transactions_files)

For each transaction I want the customer ID and how many times they bought a specific product.

Expected output:

customer_id product_id purchase_count
C1          P2         11
C1          P3         5    
C2          P9         7

CodePudding user response:

  1. Build a dataframe from data

    • read_json with lines argument
    • explode the basket list by basket 'lines'
    • decompose product information in product ids and prices
    • drop unneeded columns
  2. Build result dataframe from df

    • groupby and count
    • rename the count column
>>>TESTDATA="""
...{"customer_id": "C1", "basket": [{"product_id": "P3", "price": 506}, {"product_id": "P4", "price": 121}], "date_of_purchase": "2018-09-01 11:09:00"}
...{"customer_id": "C27", "basket": [{"product_id": "P57", "price": 154}, {"product_id": "P42", "price": 349}, {"product_id": "P47", "price": 180}], "date_of_purchase": "2021-09-06 04:52:08.505909"}
...{"customer_id": "C1", "basket": [{"product_id": "P3", "price": 506}, {"product_id": "P4", "price": 121}], "date_of_purchase": "2018-10-01 11:09:00"}
..."""
>>>df = pd.read_json(TESTDATA, lines=True)
>>>df = df.explode('basket')
>>>df[['product_id', 'price']] = df['basket'].apply(pd.Series)
>>>df.drop(['basket', 'price'], axis=1, inplace=True)
>>>df2 = df.groupby(['customer_id', 'product_id'], as_index=False).count()
>>>df2.rename(columns={'date_of_purchase': 'purchase_count'}, inplace=True)
>>>df2
  customer_id product_id purchase_count
0          C1         P3              2
1          C1         P4              2
2         C27        P42              1
3         C27        P47              1
4         C27        P57              1

CodePudding user response:

If your Dataframe be like this:

shop_list = [
{"customer_id": "C1", "basket": [{"product_id": "P3", "price": 506}, {"product_id": "P4", "price": 121}], "date_of_purchase": "2018-09-01 11:09:00"},
{"customer_id": "C27", "basket": [{"product_id": "P57", "price": 154}, {"product_id": "P42", "price": 349}, {"product_id": "P47", "price": 180}], "date_of_purchase": "2021-09-06 04:52:08.505909"},
{"customer_id": "C1", "basket": [{"product_id": "P3", "price": 506}, {"product_id": "P4", "price": 121}], "date_of_purchase": "2018-10-01 11:09:00"}
]

shop = pd.DataFrame(shop_list)

let first get all product perches for each customer

costumer_gruopby = shop.groupby('customer_id')['basket'].apply(list).to_dict()
for k in costumer_gruopby.keys():
  costumer_gruopby[k] = [item['product_id'] for sublist in costumer_gruopby[k] for item in sublist]

output: 
#{'C1': ['P3', 'P4', 'P3', 'P4'], 'C27': ['P57', 'P42', 'P47']}

then create the result table:

table= pd.DataFrame(columns=['customer_id', 'product_id', 'purchase_count'])
for costumer,value in costumer_gruopby.items():
  items = set(value)
  for item in items:
    table= table.append({'customer_id':costumer, 'product_id':item, 'purchase_count':value.count(item)}, ignore_index=True)

final result:

enter image description here

CodePudding user response:

Try this:

purchase_counts = df.groupby(['customer_id', 'product_id'], as_index=False).count()

Output:

>>> purchase_counts
  customer_id product_id  price
0          C1         P3      2
1          C1         P4      2
2         C27        P42      1
3         C27        P47      1
4         C27        P57      1
  • Related