I have a dataframe like this:
df = pd.DataFrame({'A': ['1', '2', '3'], 'B': ['aa', 'b', 'c']})
A B
0 1 aa
1 2 b
2 3 c
I want to convert each row of column B
to a list. For example, my desired output is something like this:
df_new
A B
0 1 [aa]
1 2 [b]
2 3 [c]
CodePudding user response:
I think solution from comments is very fast:
df['B'] = df['B'].map(lambda i: [i])
Faster is use list comprehension:
df['B'] = [[i] for i in df['B']]
Performance:
df = pd.DataFrame({'A': ['1', '2', '3'], 'B': ['as', 'b', 'c']})
#30k rows
df = pd.concat([df] * 10000, ignore_index=True)
In [93]: %timeit df['B'].apply(lambda x: x.split(','))
11.1 ms ± 963 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [94]: %timeit df['B'].str.split()
13.1 ms ± 788 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [96]: %timeit df['B'].map(lambda i: [i])
7.15 ms ± 54.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [97]: %timeit df['B'].apply(lambda i: [i])
7.21 ms ± 48.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [98]: %timeit df['B'].str.split(',')
13.9 ms ± 1.46 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [99]: %timeit [[i] for i in df['B']]
5.84 ms ± 73.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
CodePudding user response:
You can use split to do stuff.
import pandas as pd
df = pd.DataFrame({'A': ['1', '2', '3'], 'B': ['a', 'b', 'c']})
df['B'] = df['B'].apply(lambda x: x.split(','))
print(df)
CodePudding user response:
You could use apply
:
df['B'] = df['B'].apply(list)
A B
0 1 [a]
1 2 [b]
2 3 [c]