Many thanks in advance, I have been keen on collecting some insights on getting the below output from its corresponding input. Would like to see the table getting converted to a desirable format via using a python script as I have to work with a huge CSV at a later stage. Any inputs are highly appreciated.
Input CSV:
reference | mcc | value | currency |
---|---|---|---|
10000 | 5300 | 134.09 | USD |
10001 | 5651 | 128.95 | USD |
10002 | 5912 | 104.71 | USD |
Used python code:
from csv import DictReader
from itertools import groupby
from pprint import pprint
import json
with open('Test_bulk_transactions_data.csv') as csvfile:
r = DictReader(csvfile, skipinitialspace=True)
data = [dict(d) for d in r]
group = []
uniquekeys = []
for k, g in groupby(data, lambda r: (r['reference'], r['mcc'])):
group.append({
"reference": k[0],
"mcc": k[1],
"amount": [{k:v for k, v in d.items() if k not in ['reference','mcc']} for d in list(g)]})
uniquekeys.append(k)
print(json.dumps(group, indent = 3) '}')
Current Output:
{
"reference": "10000",
"mcc": "5300",
"amount": [
{
"value": "134.09",
"currency": "USD"
}
]
},
{
"reference": "10001",
"mcc": "5651",
"amount": [
{
"value": "128.95",
"currency": "USD"
}
]
},
{
"reference": "10002",
"mcc": "5912",
"amount": [
{
"value": "104.71",
"currency": "USD"
}
]
}
Desired Output JSON:
{
"reference": "10000",
"mcc": "5300",
"amount": {
"value": 134.09,
"currency": "USD"
}
},
{
"reference": "10001",
"mcc": "5651",
"amount": {
"value": 128.95,
"currency": "USD"
}
},
{
"reference": "10002",
"mcc": "5912",
"amount": {
"value": 104.71,
"currency": "USD"
}
}
- Important Note: Amount shouldn't fall into [] and that the value should stand as a numeric output and not strings.
CodePudding user response:
import csv
csv_filepath = "/home/mhs/test.csv"
output = []
with open(csv_filepath) as cd:
csvReader = csv.DictReader(cd)
for r in csvReader:
r["amount"] = {"value": float(r.pop("value")), "currency": r.pop("currency")}
output.append(r)
CodePudding user response:
Without relying on imported modules, you could just do this:
J = []
with open('input.csv') as csv:
cols = next(csv).split()
assert len(cols) == 4
for row in csv:
t = row.split()
if len(t) == 4:
J.append({cols[0]: t[0], cols[1]: t[1], "amount": {cols[2]: float(t[2]), cols[3]: t[3]}})
print(J)