I'm trying to use the outlier() function from psych. I have 2 df, both integers, 300x10. They are literally the same length and type of df the only difference is it's measurements from different expositions to a stimuli.
When I do it for df1 it's all good. If I do it for df2 it says
Error in solve.default(Sx) :
Lapack routine dgesv: system is exactly singular: U[10,10] = 0
I tried the solve() but oc doesn't work. I have no idea how to proceed pls help.
df1:
structure(list(AD_BORING_1 = c(1L, 2L, 3L, 5L, 4L, 5L, 3L, 6L,
4L, 3L, 5L, 3L, 5L, 4L, 3L, 7L, 7L, 4L, 1L, 4L, 4L, 5L, 2L, 3L,
3L, 5L, 6L, 6L, 1L, 2L, 2L, 3L, 4L, 4L, 2L, 1L, 5L, 7L, 3L, 3L,
3L, 4L, 3L, 5L, 3L, 3L, 6L, 6L, 5L, 7L, 4L, 3L, 7L, 5L, 6L, 7L,
5L, 2L, 3L, 5L, 3L, 2L, 4L, 6L, 2L, 5L, 2L, 2L, 2L, 5L, 6L, 2L,
4L, 2L, 4L, 1L, 5L, 7L, 4L, 3L, 4L, 2L, 5L, 3L, 2L, 3L, 3L, 5L,
6L, 6L, 3L, 6L, 2L, 5L, 4L, 4L, 6L, 3L, 5L, 6L, 5L, 5L, 4L, 6L,
3L, 2L, 4L, 4L, 1L, 4L, 2L, 5L, 4L, 6L, 4L, 5L, 6L, 2L, 3L, 3L,
3L, 4L, 6L, 5L, 5L, 3L, 3L, 2L, 2L, 1L, 4L, 6L, 2L, 5L, 2L, 4L,
6L, 1L, 2L, 4L, 5L, 6L, 3L, 3L, 2L, 3L, 6L, 1L, 6L, 5L, 3L, 6L,
5L, 3L, 3L, 3L, 6L, 4L, 5L, 3L, 6L, 5L, 5L, 6L, 3L, 3L, 5L, 5L,
3L, 5L, 6L, 3L, 5L, 1L, 3L, 3L, 3L, 4L, 6L, 4L, 6L, 5L, 4L, 3L,
6L, 3L, 1L, 2L, 4L, 3L, 2L, 5L, 3L, 5L, 6L, 4L, 3L, 3L, 5L, 7L,
4L, 1L, 3L, 2L, 5L, 5L, 4L, 3L, 2L, 3L, 4L, 7L, 3L, 6L, 5L, 1L,
5L, 4L, 3L, 5L, 5L, 3L, 3L, 6L, 3L, 4L, 3L, 6L, 2L, 6L, 2L, 4L,
6L, 5L, 4L, 2L, 5L, 6L, 3L, 6L, 2L, 6L, 7L, 5L, 4L, 7L, 6L, 3L,
4L, 5L, 1L, 3L, 2L, 2L, 5L, 4L, 6L, 4L, 3L, 6L, 4L, 5L, 5L, 6L,
6L, 5L, 3L, 5L, 7L, 5L, 6L, 6L, 4L, 6L, 6L, 5L, 7L, 4L, 6L, 3L,
6L, 3L, 3L, 3L, 6L, 3L, 3L, 4L, 6L, 1L, 3L, 3L, 5L, 4L, 3L, 5L,
4L, 5L, 6L, 3L), AD_IRRITATING_1 = c(4L, 1L, 5L, 3L, 4L, 5L,
4L, 4L, 4L, 5L, 4L, 6L, 4L, 7L, 7L, 7L, 7L, 4L, 1L, 3L, 4L, 6L,
6L, 4L, 3L, 7L, 6L, 6L, 4L, 6L, 3L, 2L, 4L, 4L, 1L, 2L, 5L, 7L,
4L, 6L, 4L, 3L, 6L, 3L, 6L, 6L, 3L, 6L, 6L, 4L, 4L, 5L, 6L, 3L,
7L, 6L, 6L, 4L, 3L, 3L, 4L, 4L, 4L, 6L, 1L, 4L, 4L, 2L, 2L, 5L,
6L, 2L, 5L, 4L, 6L, 1L, 5L, 7L, 3L, 6L, 4L, 3L, 3L, 3L, 2L, 3L,
3L, 6L, 6L, 6L, 5L, 6L, 3L, 7L, 4L, 3L, 6L, 4L, 5L, 6L, 3L, 6L,
4L, 6L, 6L, 4L, 5L, 3L, 3L, 5L, 5L, 7L, 3L, 6L, 3L, 2L, 5L, 4L,
6L, 2L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 4L, 7L, 2L, 5L, 6L, 3L, 7L,
4L, 3L, 6L, 6L, 6L, 2L, 7L, 7L, 6L, 5L, 3L, 1L, 3L, 1L, 6L, 5L,
6L, 5L, 6L, 7L, 6L, 3L, 6L, 4L, 4L, 2L, 6L, 5L, 5L, 7L, 3L, 4L,
4L, 5L, 4L, 4L, 6L, 4L, 4L, 3L, 4L, 2L, 4L, 4L, 6L, 3L, 6L, 6L,
6L, 1L, 6L, 5L, 2L, 3L, 5L, 5L, 2L, 7L, 2L, 6L, 6L, 3L, 4L, 6L,
4L, 7L, 6L, 4L, 2L, 4L, 7L, 6L, 4L, 6L, 6L, 4L, 5L, 7L, 6L, 6L,
4L, 4L, 5L, 3L, 6L, 4L, 4L, 3L, 3L, 5L, 3L, 4L, 6L, 6L, 4L, 3L,
4L, 6L, 3L, 6L, 4L, 5L, 6L, 7L, 6L, 6L, 2L, 3L, 6L, 7L, 6L, 7L,
5L, 2L, 4L, 4L, 2L, 5L, 4L, 4L, 6L, 6L, 7L, 4L, 7L, 6L, 5L, 6L,
6L, 3L, 6L, 5L, 1L, 1L, 5L, 6L, 6L, 5L, 5L, 7L, 3L, 6L, 7L, 4L,
6L, 3L, 6L, 3L, 4L, 4L, 6L, 3L, 2L, 6L, 7L, 6L, 4L, 4L, 6L, 3L,
6L, 4L, 6L, 3L, 6L, 1L), AD_DISTURBING_1 = c(4L, 1L, 5L, 7L,
7L, 5L, 6L, 4L, 7L, 6L, 7L, 6L, 3L, 7L, 7L, 5L, 4L, 6L, 4L, 4L,
3L, 7L, 7L, 6L, 2L, 7L, 2L, 4L, 7L, 4L, 6L, 2L, 3L, 4L, 1L, 4L,
6L, 7L, 6L, 6L, 5L, 6L, 6L, 7L, 7L, 6L, 5L, 6L, 7L, 7L, 6L, 5L,
5L, 3L, 7L, 6L, 6L, 6L, 6L, 4L, 6L, 3L, 4L, 6L, 4L, 6L, 4L, 5L,
3L, 5L, 6L, 5L, 3L, 3L, 3L, 3L, 5L, 6L, 6L, 6L, 4L, 3L, 6L, 4L,
4L, 5L, 6L, 6L, 5L, 6L, 7L, 6L, 5L, 7L, 3L, 3L, 6L, 2L, 6L, 6L,
3L, 6L, 6L, 5L, 7L, 6L, 6L, 6L, 5L, 4L, 7L, 7L, 3L, 6L, 3L, 7L,
6L, 4L, 4L, 6L, 6L, 4L, 7L, 6L, 6L, 2L, 7L, 5L, 7L, 4L, 7L, 6L,
6L, 7L, 4L, 6L, 3L, 6L, 6L, 5L, 7L, 7L, 7L, 3L, 6L, 3L, 7L, 3L,
6L, 3L, 7L, 3L, 7L, 7L, 7L, 6L, 7L, 6L, 4L, 3L, 6L, 5L, 5L, 5L,
3L, 2L, 7L, 5L, 6L, 6L, 7L, 7L, 4L, 2L, 7L, 4L, 6L, 3L, 7L, 7L,
6L, 5L, 7L, 1L, 4L, 6L, 1L, 7L, 6L, 6L, 6L, 7L, 6L, 7L, 6L, 4L,
6L, 6L, 2L, 7L, 6L, 4L, 4L, 4L, 3L, 4L, 7L, 3L, 6L, 6L, 6L, 7L,
7L, 6L, 4L, 4L, 4L, 4L, 6L, 3L, 4L, 7L, 5L, 4L, 7L, 2L, 7L, 6L,
6L, 6L, 3L, 6L, 3L, 7L, 4L, 4L, 7L, 7L, 5L, 3L, 3L, 6L, 7L, 7L,
6L, 6L, 7L, 6L, 6L, 4L, 3L, 7L, 7L, 6L, 7L, 7L, 7L, 6L, 7L, 6L,
6L, 5L, 6L, 3L, 6L, 6L, 4L, 4L, 7L, 6L, 7L, 4L, 7L, 7L, 2L, 6L,
7L, 4L, 6L, 3L, 6L, 2L, 5L, 2L, 3L, 3L, 7L, 6L, 7L, 6L, 4L, 4L,
6L, 6L, 7L, 7L, 7L, 3L, 6L, 3L), AD_CREDIBLE_1 = c(2L, 2L, 4L,
3L, 4L, 5L, 2L, 2L, 5L, 1L, 4L, 4L, 2L, 2L, 3L, 2L, 2L, 3L, 4L,
4L, 2L, 3L, 2L, 4L, 1L, 4L, 1L, 3L, 1L, 3L, 2L, 4L, 3L, 3L, 1L,
1L, 3L, 6L, 3L, 1L, 5L, 2L, 2L, 2L, 2L, 4L, 3L, 2L, 3L, 3L, 5L,
3L, 4L, 2L, 5L, 4L, 3L, 3L, 5L, 3L, 1L, 1L, 2L, 4L, 1L, 4L, 2L,
2L, 1L, 5L, 6L, 1L, 1L, 3L, 4L, 1L, 2L, 6L, 5L, 5L, 4L, 4L, 6L,
2L, 1L, 4L, 3L, 3L, 6L, 3L, 6L, 3L, 1L, 4L, 1L, 3L, 3L, 2L, 6L,
3L, 3L, 2L, 3L, 6L, 3L, 2L, 4L, 5L, 3L, 4L, 3L, 4L, 2L, 3L, 2L,
4L, 5L, 2L, 6L, 7L, 3L, 3L, 5L, 4L, 5L, 3L, 6L, 5L, 6L, 2L, 3L,
6L, 3L, 2L, 2L, 1L, 7L, 7L, 2L, 1L, 6L, 5L, 5L, 4L, 3L, 2L, 1L,
1L, 6L, 3L, 5L, 2L, 6L, 3L, 5L, 5L, 3L, 3L, 2L, 4L, 6L, 5L, 3L,
4L, 5L, 1L, 2L, 4L, 3L, 4L, 5L, 2L, 5L, 5L, 6L, 3L, 4L, 2L, 5L,
6L, 5L, 4L, 4L, 1L, 2L, 4L, 3L, 4L, 4L, 2L, 2L, 5L, 1L, 6L, 3L,
1L, 3L, 2L, 2L, 4L, 3L, 1L, 3L, 3L, 2L, 1L, 3L, 1L, 4L, 4L, 1L,
6L, 2L, 6L, 3L, 2L, 6L, 3L, 3L, 3L, 5L, 3L, 3L, 4L, 2L, 1L, 3L,
5L, 1L, 3L, 6L, 1L, 1L, 6L, 3L, 4L, 3L, 5L, 1L, 5L, 1L, 1L, 7L,
3L, 6L, 6L, 3L, 2L, 3L, 5L, 4L, 3L, 3L, 6L, 6L, 5L, 6L, 3L, 5L,
5L, 4L, 4L, 4L, 2L, 6L, 5L, 2L, 1L, 2L, 3L, 3L, 3L, 4L, 4L, 1L,
5L, 6L, 4L, 4L, 3L, 5L, 3L, 5L, 3L, 2L, 3L, 1L, 5L, 6L, 1L, 5L,
4L, 5L, 3L, 3L, 5L, 5L, 3L, 5L, 1L), AD_GOOD_1 = c(1L, 2L, 3L,
5L, 5L, 5L, 3L, 4L, 6L, 4L, 5L, 5L, 4L, 4L, 4L, 2L, 4L, 4L, 2L,
4L, 4L, 4L, 3L, 3L, 2L, 4L, 2L, 4L, 4L, 4L, 2L, 3L, 4L, 3L, 6L,
2L, 4L, 7L, 2L, 3L, 5L, 3L, 2L, 5L, 2L, 6L, 5L, 3L, 4L, 3L, 4L,
3L, 4L, 4L, 7L, 4L, 3L, 4L, 4L, 2L, 2L, 2L, 1L, 6L, 1L, 4L, 1L,
1L, 4L, 5L, 6L, 1L, 3L, 3L, 3L, 5L, 4L, 6L, 4L, 4L, 4L, 4L, 6L,
2L, 2L, 4L, 3L, 5L, 6L, 3L, 5L, 4L, 2L, 5L, 4L, 3L, 5L, 4L, 5L,
5L, 1L, 4L, 4L, 5L, 4L, 2L, 4L, 4L, 1L, 4L, 4L, 5L, 2L, 5L, 4L,
5L, 6L, 3L, 5L, 5L, 3L, 4L, 5L, 3L, 5L, 3L, 6L, 4L, 5L, 2L, 2L,
6L, 2L, 5L, 2L, 5L, 5L, 3L, 2L, 2L, 6L, 4L, 4L, 3L, 3L, 1L, 3L,
2L, 6L, 5L, 5L, 5L, 5L, 2L, 4L, 5L, 5L, 4L, 4L, 3L, 5L, 5L, 5L,
5L, 2L, 4L, 2L, 5L, 3L, 3L, 2L, 4L, 5L, 2L, 3L, 2L, 3L, 4L, 5L,
4L, 5L, 5L, 5L, 5L, 4L, 5L, 4L, 2L, 4L, 4L, 2L, 5L, 5L, 5L, 3L,
1L, 3L, 4L, 4L, 7L, 2L, 2L, 4L, 3L, 3L, 3L, 4L, 3L, 3L, 4L, 3L,
6L, 4L, 4L, 4L, 2L, 4L, 4L, 4L, 3L, 4L, 2L, 3L, 5L, 2L, 4L, 4L,
6L, 2L, 5L, 2L, 4L, 1L, 5L, 3L, 1L, 3L, 4L, 3L, 4L, 1L, 2L, 7L,
6L, 6L, 6L, 2L, 2L, 3L, 4L, 2L, 2L, 4L, 4L, 2L, 5L, 6L, 5L, 3L,
4L, 4L, 5L, 4L, 2L, 7L, 4L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 6L, 3L,
3L, 6L, 4L, 5L, 3L, 5L, 2L, 4L, 4L, 5L, 3L, 3L, 5L, 6L, 2L, 5L,
6L, 5L, 3L, 4L, 6L, 5L, 3L, 5L, 1L), AD_HONEST_1 = c(3L, 2L,
3L, 2L, 4L, 5L, 2L, 2L, 6L, 1L, 4L, 4L, 3L, 1L, 4L, 2L, 1L, 2L,
4L, 3L, 1L, 4L, 3L, 2L, 1L, 4L, 1L, 3L, 2L, 3L, 2L, 2L, 3L, 2L,
1L, 1L, 3L, 6L, 4L, 1L, 2L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 4L, 3L,
4L, 5L, 3L, 2L, 4L, 5L, 5L, 3L, 2L, 2L, 3L, 1L, 3L, 5L, 1L, 4L,
2L, 4L, 1L, 4L, 5L, 1L, 1L, 1L, 3L, 2L, 2L, 6L, 4L, 3L, 2L, 2L,
4L, 2L, 2L, 3L, 2L, 2L, 4L, 2L, 6L, 3L, 1L, 4L, 1L, 2L, 3L, 2L,
6L, 2L, 1L, 2L, 2L, 4L, 4L, 2L, 3L, 2L, 3L, 4L, 3L, 4L, 2L, 2L,
3L, 4L, 6L, 2L, 4L, 4L, 2L, 4L, 4L, 3L, 3L, 3L, 6L, 3L, 2L, 2L,
4L, 5L, 3L, 1L, 2L, 1L, 6L, 3L, 2L, 3L, 4L, 3L, 4L, 2L, 3L, 1L,
2L, 1L, 4L, 3L, 5L, 2L, 4L, 4L, 2L, 5L, 4L, 4L, 3L, 4L, 3L, 5L,
4L, 6L, 4L, 1L, 1L, 5L, 2L, 1L, 1L, 3L, 4L, 4L, 2L, 1L, 1L, 3L,
3L, 4L, 6L, 5L, 6L, 1L, 1L, 3L, 4L, 4L, 3L, 1L, 2L, 5L, 2L, 5L,
2L, 1L, 3L, 3L, 1L, 5L, 2L, 1L, 3L, 3L, 3L, 2L, 3L, 1L, 5L, 3L,
1L, 4L, 3L, 3L, 3L, 2L, 5L, 2L, 3L, 1L, 4L, 2L, 4L, 2L, 1L, 4L,
3L, 6L, 2L, 4L, 4L, 4L, 1L, 4L, 2L, 2L, 5L, 4L, 2L, 4L, 1L, 2L,
4L, 4L, 4L, 2L, 2L, 2L, 4L, 3L, 4L, 2L, 3L, 5L, 1L, 5L, 5L, 1L,
2L, 4L, 4L, 5L, 2L, 2L, 6L, 4L, 1L, 1L, 2L, 2L, 3L, 3L, 3L, 5L,
1L, 4L, 6L, 4L, 4L, 3L, 2L, 2L, 1L, 4L, 4L, 5L, 1L, 4L, 6L, 1L,
4L, 5L, 3L, 3L, 4L, 4L, 5L, 3L, 5L, 1L), AD_TRUTHFUL_1 = c(4L,
2L, 1L, 2L, 4L, 5L, 2L, 2L, 6L, 2L, 4L, 4L, 6L, 2L, 4L, 2L, 2L,
2L, 1L, 5L, 1L, 4L, 4L, 2L, 1L, 3L, 1L, 3L, 1L, 3L, 2L, 2L, 2L,
2L, 1L, 1L, 3L, 6L, 4L, 1L, 2L, 2L, 4L, 1L, 1L, 2L, 3L, 2L, 4L,
2L, 4L, 6L, 2L, 2L, 4L, 6L, 5L, 3L, 3L, 2L, 1L, 1L, 2L, 5L, 1L,
4L, 2L, 4L, 1L, 4L, 5L, 2L, 1L, 2L, 3L, 1L, 2L, 3L, 5L, 5L, 2L,
1L, 3L, 2L, 2L, 2L, 2L, 2L, 4L, 1L, 6L, 2L, 2L, 4L, 3L, 1L, 3L,
2L, 5L, 2L, 1L, 2L, 3L, 6L, 3L, 2L, 4L, 2L, 5L, 4L, 2L, 4L, 2L,
2L, 3L, 2L, 7L, 2L, 4L, 4L, 2L, 3L, 5L, 4L, 5L, 2L, 5L, 5L, 6L,
2L, 5L, 5L, 3L, 1L, 1L, 1L, 1L, 3L, 2L, 2L, 4L, 3L, 3L, 2L, 4L,
4L, 2L, 1L, 5L, 2L, 5L, 3L, 3L, 4L, 4L, 5L, 5L, 5L, 4L, 3L, 2L,
5L, 3L, 1L, 3L, 1L, 4L, 5L, 2L, 1L, 1L, 3L, 3L, 2L, 6L, 2L, 4L,
2L, 2L, 5L, 6L, 2L, 4L, 1L, 2L, 3L, 4L, 2L, 3L, 1L, 2L, 5L, 2L,
4L, 2L, 1L, 4L, 3L, 2L, 5L, 2L, 2L, 3L, 2L, 3L, 2L, 4L, 5L, 5L,
3L, 1L, 4L, 3L, 4L, 2L, 1L, 5L, 3L, 1L, 1L, 4L, 3L, 2L, 2L, 2L,
4L, 2L, 6L, 2L, 4L, 6L, 2L, 1L, 4L, 4L, 2L, 4L, 4L, 1L, 6L, 1L,
1L, 4L, 4L, 5L, 4L, 4L, 2L, 3L, 2L, 4L, 2L, 2L, 3L, 2L, 3L, 6L,
1L, 3L, 4L, 4L, 3L, 1L, 1L, 6L, 4L, 1L, 1L, 2L, 2L, 2L, 3L, 2L,
4L, 5L, 5L, 6L, 4L, 5L, 2L, 4L, 2L, 2L, 1L, 3L, 5L, 1L, 4L, 6L,
1L, 4L, 6L, 3L, 2L, 4L, 2L, 6L, 3L, 2L, 1L), AD_LIKEABLE_1 = c(1L,
2L, 4L, 7L, 5L, 5L, 3L, 4L, 7L, 1L, 4L, 5L, 6L, 5L, 5L, 2L, 7L,
4L, 1L, 5L, 3L, 5L, 4L, 2L, 3L, 5L, 2L, 5L, 2L, 3L, 3L, 2L, 1L,
4L, 2L, 2L, 4L, 7L, 3L, 1L, 6L, 2L, 3L, 6L, 4L, 5L, 5L, 1L, 5L,
4L, 3L, 3L, 4L, 4L, 6L, 7L, 3L, 4L, 1L, 4L, 2L, 3L, 2L, 6L, 1L,
5L, 3L, 2L, 1L, 6L, 6L, 2L, 6L, 3L, 4L, 1L, 3L, 7L, 2L, 2L, 5L,
1L, 6L, 5L, 4L, 2L, 3L, 3L, 5L, 5L, 6L, 5L, 2L, 5L, 1L, 3L, 6L,
4L, 5L, 6L, 1L, 2L, 4L, 6L, 5L, 2L, 4L, 4L, 1L, 4L, 5L, 5L, 3L,
7L, 2L, 5L, 6L, 5L, 4L, 3L, 2L, 5L, 5L, 3L, 3L, 3L, 6L, 4L, 7L,
2L, 4L, 6L, 4L, 3L, 1L, 5L, 4L, 6L, 2L, 1L, 5L, 4L, 4L, 4L, 3L,
1L, 2L, 1L, 5L, 2L, 4L, 5L, 5L, 5L, 2L, 4L, 6L, 4L, 6L, 4L, 4L,
5L, 5L, 7L, 2L, 4L, 3L, 6L, 4L, 6L, 2L, 2L, 5L, 4L, 2L, 3L, 3L,
5L, 7L, 3L, 6L, 2L, 6L, 4L, 4L, 2L, 2L, 1L, 3L, 1L, 2L, 5L, 5L,
5L, 5L, 5L, 4L, 5L, 5L, 7L, 4L, 1L, 2L, 1L, 5L, 5L, 3L, 5L, 4L,
3L, 2L, 6L, 5L, 6L, 2L, 5L, 5L, 2L, 4L, 5L, 4L, 2L, 2L, 6L, 4L,
2L, 4L, 6L, 2L, 7L, 4L, 6L, 1L, 4L, 2L, 4L, 3L, 4L, 6L, 1L, 1L,
4L, 7L, 5L, 5L, 7L, 1L, 4L, 2L, 1L, 1L, 1L, 4L, 4L, 4L, 6L, 6L,
5L, 4L, 2L, 5L, 5L, 5L, 6L, 7L, 4L, 1L, 3L, 3L, 2L, 7L, 3L, 4L,
7L, 5L, 4L, 6L, 4L, 6L, 3L, 5L, 2L, 5L, 3L, 6L, 3L, 2L, 5L, 6L,
1L, 5L, 6L, 5L, 4L, 2L, 5L, 4L, 3L, 6L, 1L), AD_ENJOYABLE_1 = c(1L,
2L, 4L, 6L, 4L, 5L, 3L, 3L, 4L, 4L, 4L, 5L, 6L, 5L, 5L, 2L, 6L,
2L, 1L, 5L, 5L, 5L, 4L, 2L, 5L, 5L, 4L, 5L, 3L, 2L, 3L, 2L, 4L,
4L, 2L, 3L, 4L, 7L, 4L, 4L, 5L, 2L, 3L, 4L, 4L, 4L, 6L, 5L, 5L,
4L, 4L, 5L, 5L, 5L, 6L, 6L, 4L, 4L, 2L, 4L, 3L, 2L, 5L, 5L, 1L,
5L, 2L, 2L, 1L, 5L, 6L, 3L, 4L, 3L, 5L, 1L, 3L, 7L, 3L, 5L, 3L,
1L, 5L, 3L, 2L, 3L, 2L, 5L, 5L, 4L, 5L, 5L, 3L, 5L, 5L, 4L, 6L,
2L, 5L, 6L, 4L, 5L, 4L, 5L, 4L, 2L, 5L, 5L, 2L, 4L, 2L, 5L, 2L,
7L, 2L, 3L, 6L, 3L, 4L, 2L, 4L, 4L, 5L, 5L, 5L, 3L, 6L, 4L, 5L,
2L, 5L, 6L, 4L, 5L, 2L, 5L, 4L, 5L, 2L, 2L, 4L, 4L, 4L, 2L, 3L,
2L, 2L, 1L, 5L, 2L, 5L, 6L, 5L, 3L, 4L, 6L, 6L, 5L, 5L, 5L, 3L,
4L, 5L, 6L, 2L, 2L, 6L, 6L, 4L, 4L, 2L, 2L, 4L, 2L, 3L, 2L, 2L,
3L, 5L, 3L, 6L, 3L, 5L, 7L, 5L, 2L, 1L, 3L, 4L, 2L, 2L, 6L, 3L,
6L, 4L, 4L, 5L, 4L, 2L, 7L, 5L, 1L, 4L, 3L, 5L, 4L, 3L, 3L, 3L,
3L, 4L, 7L, 3L, 6L, 3L, 4L, 5L, 4L, 3L, 4L, 4L, 2L, 3L, 5L, 2L,
2L, 4L, 6L, 2L, 5L, 2L, 4L, 3L, 4L, 3L, 2L, 5L, 5L, 5L, 5L, 1L,
4L, 7L, 5L, 5L, 6L, 3L, 3L, 4L, 4L, 1L, 1L, 2L, 3L, 3L, 6L, 6L,
5L, 4L, 2L, 4L, 5L, 4L, 2L, 6L, 4L, 1L, 3L, 3L, 4L, 5L, 3L, 3L,
7L, 5L, 4L, 5L, 4L, 5L, 3L, 4L, 2L, 5L, 3L, 6L, 2L, 2L, 5L, 6L,
2L, 5L, 6L, 4L, 4L, 4L, 7L, 5L, 3L, 5L, 1L), LIKE_1 = c(2L, 2L,
4L, 6L, 5L, 6L, 2L, 4L, 5L, 4L, 4L, 4L, 3L, 4L, 5L, 2L, 4L, 3L,
1L, 4L, 3L, 4L, 4L, 4L, 3L, 4L, 5L, 5L, 2L, 3L, 2L, 2L, 4L, 4L,
1L, 3L, 4L, 6L, 2L, 4L, 4L, 3L, 3L, 4L, 1L, 3L, 5L, 5L, 4L, 3L,
4L, 3L, 5L, 5L, 7L, 5L, 4L, 3L, 2L, 3L, 2L, 1L, 3L, 6L, 2L, 4L,
1L, 2L, 1L, 5L, 6L, 3L, 3L, 3L, 4L, 2L, 4L, 6L, 2L, 4L, 5L, 2L,
5L, 2L, 3L, 4L, 2L, 5L, 5L, 5L, 6L, 5L, 2L, 5L, 3L, 2L, 5L, 4L,
5L, 5L, 3L, 4L, 4L, 6L, 4L, 2L, 4L, 4L, 1L, 4L, 2L, 6L, 2L, 7L,
2L, 3L, 6L, 3L, 6L, 2L, 3L, 4L, 5L, 5L, 5L, 3L, 6L, 3L, 3L, 1L,
4L, 6L, 5L, 5L, 1L, 4L, 4L, 5L, 4L, 4L, 5L, 5L, 2L, 4L, 3L, 1L,
4L, 1L, 5L, 5L, 5L, 5L, 6L, 4L, 4L, 5L, 5L, 4L, 2L, 4L, 4L, 4L,
5L, 6L, 2L, 4L, 2L, 5L, 3L, 4L, 2L, 3L, 4L, 2L, 2L, 2L, 4L, 4L,
5L, 2L, 5L, 4L, 5L, 5L, 5L, 5L, 1L, 4L, 4L, 2L, 2L, 6L, 3L, 4L,
2L, 2L, 4L, 4L, 3L, 7L, 4L, 1L, 2L, 3L, 5L, 3L, 5L, 2L, 3L, 4L,
4L, 6L, 5L, 6L, 2L, 2L, 4L, 4L, 5L, 3L, 4L, 2L, 3L, 5L, 2L, 4L,
4L, 6L, 1L, 6L, 3L, 3L, 1L, 5L, 4L, 4L, 3L, 6L, 3L, 4L, 2L, 3L,
6L, 5L, 5L, 5L, 2L, 2L, 2L, 4L, 2L, 2L, 2L, 4L, 4L, 5L, 6L, 4L,
2L, 4L, 5L, 5L, 5L, 2L, 5L, 4L, 1L, 2L, 3L, 2L, 5L, 3L, 3L, 6L,
2L, 4L, 6L, 4L, 5L, 3L, 5L, 2L, 5L, 2L, 5L, 3L, 2L, 4L, 6L, 2L,
5L, 4L, 5L, 3L, 2L, 6L, 4L, 2L, 5L, 1L)), row.names = c(NA, -300L
), class = c("tbl_df", "tbl", "data.frame"))
df2
structure(list(AD_BORING_2 = c(5L, 2L, 6L, 4L, 5L, 1L, 7L, 6L,
7L, 6L, 5L, 4L, 3L, 4L, 6L, 4L, 3L, 6L, 6L, 6L, 2L, 3L, 1L, 7L,
6L, 6L, 3L, 2L, 6L, 4L, 6L, 3L, 4L, 4L, 2L, 6L, 5L, 3L, 4L, 4L,
3L, 6L, 3L, 6L, 6L, 6L, 6L, 6L, 7L, 4L, 5L, 5L, 7L, 3L, 4L, 2L,
3L, 6L, 4L, 6L, 6L, 5L, 6L, 3L, 6L, 7L, 6L, 6L, 3L, 6L, 3L, 6L,
3L, 6L, 6L, 4L, 4L, 1L, 4L, 4L, 4L, 5L, 6L, 4L, 4L, 3L, 6L, 6L,
6L, 2L, 6L, 4L, 1L, 4L, 1L, 4L, 6L, 4L, 5L, 4L, 7L, 6L, 4L, 6L,
6L, 6L, 6L, 6L, 6L, 4L, 7L, 4L, 4L, 3L, 6L, 6L, 6L, 1L, 7L, 6L,
6L, 6L, 3L, 5L, 5L, 5L, 5L, 5L, 7L, 6L, 6L, 5L, 6L, 7L, 2L, 6L,
6L, 4L, 5L, 5L, 6L, 3L, 6L, 7L, 6L, 5L, 6L, 6L, 1L, 5L, 6L, 6L,
7L, 7L, 6L, 5L, 6L, 6L, 7L, 5L, 7L, 6L, 6L, 7L, 6L, 6L, 6L, 4L,
6L, 5L, 6L, 6L, 3L, 6L, 6L, 6L, 7L, 4L, 4L, 5L, 7L, 7L, 2L, 7L,
4L, 6L, 4L, 6L, 5L, 7L, 4L, 7L, 7L, 5L, 3L, 5L, 6L, 4L, 2L, 7L,
6L, 6L, 6L, 3L, 7L, 5L, 3L, 3L, 6L, 5L, 5L, 7L, 5L, 6L, 4L, 6L,
6L, 6L, 6L, 6L, 7L, 6L, 5L, 7L, 4L, 7L, 4L, 6L, 4L, 7L, 3L, 6L,
7L, 6L, 3L, 5L, 7L, 5L, 6L, 7L, 7L, 6L, 7L, 6L, 5L, 6L, 7L, 3L,
5L, 6L, 4L, 2L, 5L, 6L, 6L, 5L, 5L, 2L, 4L, 3L, 5L, 6L, 6L, 6L,
6L, 6L, 4L, 4L, 3L, 7L, 6L, 7L, 5L, 6L, 4L, 4L, 7L, 4L, 5L, 3L,
2L, 1L, 5L, 4L, 3L, 6L, 6L, 6L, 5L, 6L, 4L, 5L, 5L, 5L, 6L, 7L,
6L, 5L, 4L, 4L), AD_IRRITATING_2 = c(3L, 3L, 3L, 3L, 5L, 1L,
6L, 6L, 7L, 7L, 6L, 6L, 5L, 7L, 6L, 4L, 2L, 5L, 6L, 6L, 5L, 3L,
3L, 7L, 6L, 7L, 3L, 2L, 7L, 3L, 6L, 3L, 4L, 5L, 4L, 6L, 6L, 7L,
6L, 4L, 3L, 7L, 3L, 6L, 7L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 6L, 5L,
6L, 4L, 4L, 5L, 5L, 6L, 7L, 5L, 6L, 4L, 6L, 7L, 6L, 6L, 6L, 6L,
4L, 6L, 4L, 6L, 6L, 4L, 4L, 2L, 3L, 2L, 4L, 6L, 6L, 4L, 6L, 4L,
6L, 6L, 6L, 4L, 6L, 4L, 2L, 6L, 3L, 4L, 7L, 6L, 6L, 4L, 7L, 6L,
5L, 5L, 6L, 5L, 6L, 6L, 6L, 4L, 7L, 4L, 4L, 3L, 6L, 3L, 6L, 4L,
7L, 6L, 2L, 6L, 4L, 6L, 6L, 7L, 2L, 6L, 7L, 6L, 6L, 5L, 5L, 7L,
4L, 6L, 6L, 4L, 6L, 7L, 6L, 6L, 6L, 7L, 6L, 5L, 6L, 6L, 6L, 5L,
6L, 5L, 6L, 7L, 6L, 6L, 7L, 6L, 7L, 6L, 6L, 6L, 6L, 4L, 6L, 4L,
7L, 3L, 6L, 4L, 5L, 7L, 4L, 6L, 7L, 2L, 7L, 4L, 4L, 7L, 6L, 6L,
6L, 7L, 3L, 5L, 4L, 6L, 6L, 7L, 4L, 2L, 6L, 6L, 4L, 4L, 7L, 4L,
3L, 7L, 6L, 4L, 4L, 4L, 7L, 5L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 7L,
4L, 6L, 4L, 6L, 4L, 6L, 7L, 6L, 5L, 7L, 4L, 7L, 4L, 6L, 4L, 6L,
7L, 6L, 6L, 6L, 5L, 3L, 5L, 5L, 6L, 6L, 7L, 6L, 7L, 7L, 5L, 4L,
7L, 6L, 5L, 5L, 5L, 1L, 6L, 3L, 7L, 6L, 6L, 4L, 6L, 3L, 5L, 6L,
6L, 6L, 7L, 6L, 2L, 6L, 7L, 7L, 6L, 7L, 6L, 6L, 4L, 6L, 7L, 4L,
6L, 3L, 4L, 3L, 5L, 4L, 5L, 6L, 6L, 6L, 7L, 6L, 4L, 6L, 5L, 5L,
6L, 6L, 7L, 6L, 2L, 4L), AD_DISTURBING_2 = c(3L, 6L, 2L, 4L,
3L, 7L, 1L, 2L, 1L, 2L, 3L, 4L, 5L, 4L, 2L, 4L, 5L, 2L, 2L, 2L,
6L, 5L, 7L, 1L, 2L, 2L, 5L, 6L, 2L, 4L, 2L, 5L, 4L, 4L, 6L, 2L,
3L, 5L, 4L, 4L, 5L, 2L, 5L, 2L, 2L, 2L, 2L, 2L, 1L, 4L, 3L, 3L,
1L, 5L, 4L, 6L, 5L, 2L, 4L, 2L, 2L, 3L, 2L, 5L, 2L, 1L, 2L, 2L,
5L, 2L, 5L, 2L, 5L, 2L, 2L, 4L, 4L, 7L, 4L, 4L, 4L, 3L, 2L, 4L,
4L, 5L, 2L, 2L, 2L, 6L, 2L, 4L, 7L, 4L, 7L, 4L, 2L, 4L, 3L, 4L,
1L, 2L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 1L, 4L, 4L, 5L, 2L, 2L,
2L, 7L, 1L, 2L, 2L, 2L, 5L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 3L,
2L, 1L, 6L, 2L, 2L, 4L, 3L, 3L, 2L, 5L, 2L, 1L, 2L, 3L, 2L, 2L,
7L, 3L, 2L, 2L, 1L, 1L, 2L, 3L, 2L, 2L, 1L, 3L, 1L, 2L, 2L, 1L,
2L, 2L, 2L, 4L, 2L, 3L, 2L, 2L, 5L, 2L, 2L, 2L, 1L, 4L, 4L, 3L,
1L, 1L, 6L, 1L, 4L, 2L, 4L, 2L, 3L, 1L, 4L, 1L, 1L, 3L, 5L, 3L,
2L, 4L, 6L, 1L, 2L, 2L, 2L, 5L, 1L, 3L, 5L, 5L, 2L, 3L, 3L, 1L,
3L, 2L, 4L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 3L, 1L, 4L, 1L, 4L, 2L,
4L, 1L, 5L, 2L, 1L, 2L, 5L, 3L, 1L, 3L, 2L, 1L, 1L, 2L, 1L, 2L,
3L, 2L, 1L, 5L, 3L, 2L, 4L, 6L, 3L, 2L, 2L, 3L, 3L, 6L, 4L, 5L,
3L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 5L, 1L, 2L, 1L, 3L, 2L, 4L, 4L,
1L, 4L, 3L, 5L, 6L, 7L, 3L, 4L, 5L, 2L, 2L, 2L, 3L, 2L, 4L, 3L,
3L, 3L, 2L, 1L, 2L, 3L, 4L, 4L), AD_CREDIBLE_2 = c(5L, 6L, 4L,
6L, 4L, 7L, 4L, 5L, 7L, 4L, 4L, 4L, 2L, 5L, 4L, 4L, 3L, 5L, 2L,
6L, 1L, 2L, 2L, 4L, 6L, 4L, 3L, 2L, 6L, 3L, 5L, 4L, 3L, 5L, 2L,
2L, 4L, 1L, 5L, 4L, 5L, 2L, 2L, 5L, 4L, 5L, 3L, 4L, 5L, 4L, 5L,
5L, 1L, 2L, 4L, 5L, 4L, 4L, 5L, 5L, 6L, 5L, 6L, 5L, 5L, 5L, 4L,
4L, 4L, 6L, 4L, 6L, 1L, 5L, 1L, 4L, 3L, 2L, 2L, 5L, 4L, 4L, 6L,
4L, 4L, 3L, 2L, 6L, 6L, 2L, 5L, 1L, 2L, 2L, 5L, 4L, 6L, 3L, 3L,
2L, 4L, 6L, 3L, 5L, 2L, 1L, 2L, 5L, 5L, 4L, 6L, 5L, 5L, 3L, 2L,
5L, 5L, 2L, 6L, 6L, 3L, 2L, 5L, 5L, 6L, 5L, 4L, 3L, 7L, 5L, 4L,
5L, 3L, 1L, 5L, 2L, 6L, 4L, 2L, 5L, 6L, 3L, 4L, 4L, 6L, 3L, 4L,
4L, 2L, 5L, 5L, 6L, 5L, 1L, 6L, 3L, 5L, 3L, 4L, 6L, 5L, 6L, 4L,
2L, 1L, 4L, 6L, 5L, 4L, 1L, 5L, 4L, 5L, 4L, 7L, 5L, 5L, 4L, 4L,
5L, 3L, 6L, 3L, 6L, 5L, 5L, 2L, 2L, 5L, 1L, 6L, 4L, 7L, 1L, 3L,
3L, 3L, 2L, 2L, 1L, 6L, 2L, 5L, 4L, 1L, 6L, 4L, 2L, 2L, 4L, 1L,
7L, 5L, 2L, 3L, 3L, 4L, 2L, 6L, 5L, 7L, 4L, 5L, 5L, 4L, 6L, 5L,
4L, 4L, 2L, 5L, 4L, 4L, 6L, 4L, 4L, 4L, 5L, 3L, 6L, 7L, 3L, 7L,
4L, 4L, 2L, 6L, 3L, 4L, 3L, 4L, 2L, 2L, 2L, 2L, 5L, 5L, 3L, 4L,
2L, 4L, 4L, 4L, 5L, 5L, 4L, 2L, 5L, 6L, 4L, 5L, 6L, 3L, 5L, 2L,
6L, 6L, 4L, 5L, 5L, 3L, 5L, 5L, 3L, 4L, 4L, 1L, 3L, 5L, 6L, 5L,
6L, 3L, 2L, 3L, 5L, 6L, 5L, 5L, 4L), AD_GOOD_2 = c(4L, 6L, 5L,
5L, 5L, 7L, 6L, 5L, 7L, 6L, 5L, 4L, 3L, 4L, 4L, 4L, 6L, 5L, 5L,
6L, 2L, 3L, 2L, 5L, 6L, 6L, 4L, 2L, 4L, 4L, 6L, 5L, 4L, 4L, 2L,
3L, 5L, 3L, 5L, 4L, 3L, 5L, 2L, 6L, 5L, 4L, 6L, 5L, 5L, 4L, 5L,
5L, 5L, 5L, 5L, 4L, 4L, 5L, 4L, 5L, 7L, 5L, 6L, 5L, 6L, 6L, 5L,
6L, 4L, 6L, 4L, 4L, 5L, 5L, 5L, 4L, 5L, 2L, 2L, 6L, 4L, 5L, 6L,
4L, 2L, 3L, 3L, 5L, 5L, 5L, 6L, 4L, 2L, 3L, 4L, 4L, 6L, 4L, 5L,
3L, 5L, 6L, 3L, 5L, 4L, 6L, 6L, 5L, 5L, 4L, 7L, 4L, 5L, 5L, 5L,
6L, 5L, 1L, 7L, 6L, 3L, 5L, 5L, 5L, 6L, 5L, 3L, 5L, 7L, 5L, 5L,
5L, 6L, 7L, 6L, 5L, 4L, 4L, 5L, 5L, 6L, 4L, 5L, 7L, 6L, 5L, 4L,
5L, 2L, 5L, 6L, 6L, 6L, 6L, 5L, 5L, 6L, 5L, 6L, 5L, 5L, 5L, 5L,
3L, 4L, 5L, 7L, 5L, 6L, 3L, 4L, 5L, 5L, 2L, 6L, 5L, 7L, 4L, 4L,
6L, 6L, 6L, 4L, 7L, 4L, 5L, 5L, 6L, 5L, 6L, 6L, 5L, 7L, 5L, 2L,
5L, 5L, 3L, 2L, 7L, 6L, 5L, 5L, 4L, 4L, 5L, 4L, 4L, 5L, 4L, 4L,
7L, 5L, 6L, 4L, 6L, 5L, 6L, 5L, 6L, 7L, 6L, 5L, 6L, 5L, 6L, 5L,
6L, 4L, 6L, 7L, 5L, 4L, 5L, 5L, 4L, 5L, 5L, 6L, 6L, 7L, 6L, 7L,
6L, 5L, 2L, 6L, 5L, 5L, 4L, 5L, 3L, 5L, 2L, 6L, 5L, 6L, 4L, 6L,
2L, 5L, 6L, 5L, 6L, 7L, 5L, 2L, 4L, 3L, 4L, 4L, 6L, 5L, 6L, 2L,
4L, 6L, 4L, 6L, 3L, 3L, 2L, 5L, 5L, 3L, 6L, 5L, 5L, 5L, 6L, 5L,
6L, 5L, 5L, 5L, 7L, 5L, 6L, 2L, 5L), AD_HONEST_2 = c(5L, 6L,
3L, 5L, 4L, 7L, 4L, 5L, 7L, 4L, 4L, 4L, 3L, 4L, 1L, 4L, 4L, 4L,
4L, 6L, 2L, 3L, 2L, 5L, 6L, 4L, 3L, 2L, 5L, 3L, 5L, 3L, 3L, 4L,
4L, 2L, 4L, 3L, 4L, 4L, 3L, 1L, 2L, 4L, 5L, 4L, 5L, 5L, 5L, 3L,
4L, 5L, 4L, 3L, 6L, 4L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 6L, 6L, 6L,
5L, 4L, 4L, 6L, 4L, 4L, 1L, 4L, 4L, 4L, 5L, 3L, 2L, 5L, 3L, 4L,
5L, 4L, 3L, 3L, 3L, 2L, 6L, 3L, 6L, 4L, 2L, 4L, 5L, 4L, 4L, 2L,
5L, 3L, 5L, 4L, 3L, 6L, 4L, 2L, 4L, 2L, 4L, 4L, 6L, 4L, 5L, 3L,
3L, 6L, 6L, 2L, 4L, 5L, 4L, 5L, 4L, 5L, 6L, 4L, 2L, 6L, 7L, 4L,
4L, 7L, 4L, 4L, 6L, 2L, 7L, 4L, 2L, 5L, 6L, 4L, 4L, 7L, 4L, 3L,
5L, 5L, 2L, 3L, 4L, 3L, 4L, 2L, 3L, 3L, 5L, 4L, 4L, 4L, 2L, 4L,
4L, 2L, 4L, 4L, 4L, 5L, 4L, 1L, 5L, 4L, 4L, 4L, 4L, 5L, 4L, 4L,
4L, 4L, 6L, 5L, 4L, 7L, 5L, 4L, 4L, 4L, 5L, 4L, 4L, 3L, 6L, 4L,
4L, 4L, 4L, 3L, 4L, 1L, 4L, 2L, 4L, 3L, 4L, 1L, 4L, 3L, 4L, 6L,
4L, 4L, 5L, 4L, 4L, 5L, 5L, 3L, 4L, 4L, 7L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 5L, 5L, 5L, 7L, 4L,
7L, 4L, 4L, 2L, 4L, 3L, 4L, 5L, 4L, 3L, 4L, 1L, 4L, 5L, 5L, 4L,
6L, 1L, 4L, 5L, 5L, 6L, 6L, 5L, 3L, 5L, 5L, 2L, 4L, 6L, 4L, 5L,
2L, 4L, 6L, 4L, 6L, 2L, 4L, 2L, 5L, 2L, 3L, 4L, 1L, 3L, 4L, 6L,
5L, 6L, 3L, 5L, 5L, 4L, 5L, 5L, 5L, 5L), AD_TRUTHFUL_2 = c(5L,
6L, 3L, 6L, 4L, 7L, 2L, 4L, 7L, 4L, 4L, 4L, 4L, 1L, 1L, 4L, 1L,
3L, 2L, 6L, 2L, 2L, 4L, 4L, 6L, 4L, 3L, 2L, 5L, 2L, 5L, 3L, 1L,
4L, 4L, 2L, 4L, 2L, 4L, 1L, 3L, 1L, 2L, 4L, 4L, 3L, 6L, 2L, 4L,
2L, 3L, 5L, 2L, 2L, 5L, 3L, 4L, 4L, 3L, 5L, 6L, 5L, 5L, 5L, 6L,
6L, 6L, 4L, 4L, 6L, 4L, 5L, 2L, 6L, 4L, 4L, 5L, 2L, 1L, 4L, 3L,
4L, 6L, 4L, 4L, 2L, 2L, 2L, 5L, 2L, 6L, 2L, 1L, 2L, 1L, 4L, 3L,
1L, 4L, 1L, 5L, 4L, 1L, 4L, 3L, 3L, 4L, 3L, 6L, 4L, 5L, 4L, 5L,
3L, 2L, 6L, 6L, 1L, 4L, 5L, 4L, 3L, 4L, 5L, 6L, 4L, 3L, 5L, 7L,
4L, 4L, 5L, 4L, 1L, 5L, 2L, 2L, 4L, 2L, 6L, 6L, 3L, 3L, 6L, 4L,
2L, 4L, 5L, 2L, 2L, 2L, 6L, 6L, 2L, 2L, 2L, 6L, 3L, 6L, 4L, 1L,
5L, 3L, 1L, 1L, 4L, 4L, 5L, 4L, 1L, 4L, 2L, 1L, 4L, 6L, 5L, 4L,
3L, 4L, 4L, 6L, 5L, 4L, 7L, 4L, 5L, 4L, 3L, 4L, 1L, 3L, 3L, 5L,
2L, 2L, 3L, 1L, 2L, 4L, 1L, 5L, 1L, 2L, 3L, 1L, 2L, 4L, 6L, 2L,
6L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 4L, 2L, 7L, 6L, 4L, 4L, 1L,
4L, 5L, 5L, 4L, 2L, 6L, 4L, 4L, 4L, 5L, 4L, 2L, 5L, 1L, 4L, 7L,
2L, 7L, 2L, 2L, 1L, 4L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 5L,
4L, 2L, 1L, 4L, 5L, 2L, 4L, 4L, 4L, 1L, 4L, 6L, 2L, 4L, 6L, 3L,
5L, 2L, 5L, 6L, 4L, 6L, 1L, 2L, 4L, 5L, 2L, 3L, 4L, 1L, 3L, 4L,
6L, 6L, 6L, 1L, 3L, 1L, 6L, 6L, 5L, 2L, 3L), AD_LIKEABLE_2 = c(3L,
5L, 5L, 5L, 5L, 7L, 6L, 4L, 7L, 6L, 5L, 5L, 3L, 4L, 2L, 5L, 1L,
3L, 5L, 6L, 2L, 1L, 2L, 5L, 7L, 6L, 2L, 4L, 7L, 3L, 6L, 3L, 4L,
4L, 2L, 6L, 5L, 2L, 3L, 2L, 2L, 4L, 2L, 6L, 4L, 5L, 6L, 5L, 4L,
4L, 3L, 6L, 1L, 5L, 4L, 4L, 4L, 6L, 1L, 5L, 6L, 5L, 6L, 3L, 6L,
7L, 5L, 5L, 1L, 4L, 4L, 5L, 3L, 4L, 6L, 4L, 4L, 1L, 1L, 5L, 5L,
5L, 6L, 4L, 5L, 4L, 4L, 6L, 4L, 1L, 6L, 3L, 1L, 4L, 1L, 4L, 6L,
4L, 4L, 3L, 5L, 4L, 3L, 5L, 5L, 6L, 6L, 2L, 4L, 4L, 7L, 6L, 4L,
2L, 6L, 4L, 6L, 1L, 6L, 6L, 4L, 6L, 3L, 3L, 2L, 6L, 3L, 5L, 7L,
6L, 5L, 6L, 3L, 7L, 5L, 6L, 5L, 4L, 5L, 4L, 6L, 4L, 5L, 6L, 6L,
5L, 3L, 6L, 2L, 5L, 1L, 6L, 3L, 1L, 2L, 2L, 6L, 5L, 6L, 5L, 4L,
5L, 4L, 6L, 4L, 2L, 7L, 5L, 6L, 5L, 3L, 6L, 2L, 2L, 3L, 4L, 7L,
2L, 4L, 5L, 6L, 4L, 5L, 7L, 4L, 4L, 5L, 5L, 5L, 5L, 4L, 5L, 4L,
4L, 1L, 6L, 5L, 3L, 1L, 7L, 4L, 1L, 4L, 1L, 4L, 1L, 5L, 2L, 6L,
5L, 4L, 6L, 4L, 5L, 3L, 2L, 2L, 4L, 6L, 6L, 4L, 2L, 5L, 6L, 4L,
6L, 4L, 6L, 4L, 5L, 5L, 4L, 1L, 3L, 5L, 5L, 5L, 5L, 7L, 2L, 7L,
5L, 7L, 6L, 5L, 4L, 4L, 4L, 4L, 1L, 4L, 4L, 3L, 2L, 5L, 3L, 6L,
3L, 7L, 1L, 5L, 4L, 2L, 6L, 6L, 3L, 1L, 6L, 3L, 2L, 5L, 6L, 5L,
7L, 5L, 4L, 6L, 4L, 6L, 2L, 1L, 2L, 6L, 4L, 3L, 6L, 5L, 5L, 4L,
5L, 4L, 6L, 5L, 5L, 5L, 6L, 5L, 6L, 1L, 5L), AD_ENJOYABLE_2 = c(4L,
5L, 5L, 4L, 5L, 5L, 7L, 4L, 7L, 6L, 5L, 5L, 4L, 4L, 4L, 5L, 2L,
5L, 7L, 6L, 2L, 1L, 2L, 5L, 7L, 5L, 2L, 2L, 7L, 2L, 6L, 3L, 4L,
4L, 2L, 6L, 5L, 3L, 5L, 2L, 3L, 5L, 2L, 6L, 6L, 5L, 6L, 4L, 4L,
3L, 4L, 6L, 5L, 5L, 4L, 3L, 5L, 6L, 2L, 5L, 6L, 4L, 6L, 3L, 6L,
6L, 6L, 5L, 3L, 4L, 4L, 5L, 4L, 5L, 6L, 4L, 4L, 1L, 2L, 5L, 5L,
5L, 6L, 4L, 6L, 4L, 3L, 6L, 6L, 2L, 5L, 2L, 2L, 4L, 2L, 4L, 7L,
4L, 4L, 3L, 6L, 6L, 4L, 5L, 6L, 6L, 7L, 2L, 5L, 4L, 7L, 5L, 4L,
5L, 6L, 6L, 6L, 4L, 6L, 5L, 4L, 6L, 4L, 6L, 6L, 5L, 4L, 5L, 7L,
6L, 6L, 5L, 3L, 7L, 4L, 6L, 5L, 4L, 6L, 4L, 6L, 4L, 6L, 7L, 7L,
3L, 3L, 6L, 2L, 5L, 7L, 5L, 6L, 6L, 5L, 6L, 6L, 5L, 4L, 5L, 5L,
5L, 4L, 6L, 2L, 3L, 7L, 3L, 6L, 5L, 3L, 6L, 3L, 5L, 5L, 4L, 7L,
5L, 4L, 6L, 6L, 5L, 5L, 7L, 4L, 4L, 2L, 6L, 5L, 7L, 4L, 6L, 4L,
5L, 2L, 6L, 5L, 3L, 1L, 7L, 6L, 4L, 5L, 3L, 7L, 3L, 5L, 5L, 7L,
5L, 5L, 7L, 3L, 3L, 3L, 5L, 2L, 5L, 6L, 7L, 5L, 5L, 4L, 7L, 5L,
6L, 4L, 6L, 4L, 5L, 6L, 6L, 3L, 4L, 6L, 4L, 6L, 5L, 7L, 6L, 7L,
6L, 7L, 6L, 5L, 4L, 6L, 5L, 4L, 3L, 5L, 3L, 6L, 3L, 6L, 5L, 6L,
3L, 7L, 3L, 5L, 5L, 5L, 6L, 6L, 3L, 2L, 6L, 6L, 2L, 6L, 6L, 5L,
6L, 2L, 5L, 7L, 4L, 7L, 3L, 1L, 3L, 5L, 4L, 5L, 6L, 5L, 5L, 5L,
6L, 5L, 6L, 4L, 5L, 6L, 5L, 6L, 6L, 1L, 5L), LIKE_2 = c(3L, 4L,
4L, 4L, 5L, 7L, 6L, 5L, 7L, 5L, 4L, 4L, 1L, 4L, 6L, 5L, 2L, 5L,
5L, 5L, 1L, 2L, 1L, 5L, 7L, 5L, 3L, 3L, 6L, 4L, 6L, 4L, 4L, 4L,
2L, 5L, 4L, 4L, 4L, 1L, 3L, 5L, 2L, 5L, 5L, 5L, 5L, 4L, 5L, 2L,
4L, 5L, 5L, 4L, 4L, 3L, 2L, 6L, 3L, 5L, 6L, 5L, 6L, 4L, 6L, 6L,
6L, 6L, 1L, 5L, 2L, 5L, 5L, 5L, 5L, 3L, 6L, 1L, 2L, 5L, 5L, 5L,
6L, 4L, 5L, 4L, 2L, 6L, 5L, 3L, 6L, 3L, 2L, 4L, 1L, 4L, 6L, 4L,
4L, 2L, 5L, 5L, 4L, 5L, 5L, 6L, 6L, 3L, 4L, 4L, 6L, 6L, 4L, 3L,
5L, 5L, 6L, 4L, 7L, 6L, 4L, 6L, 4L, 6L, 5L, 6L, 3L, 5L, 7L, 5L,
5L, 5L, 2L, 6L, 4L, 5L, 5L, 3L, 4L, 5L, 5L, 4L, 5L, 7L, 6L, 5L,
4L, 5L, 1L, 5L, 6L, 6L, 5L, 5L, 5L, 6L, 6L, 5L, 4L, 5L, 5L, 5L,
6L, 6L, 4L, 5L, 6L, 4L, 6L, 5L, 4L, 6L, 4L, 3L, 6L, 4L, 6L, 4L,
4L, 5L, 6L, 6L, 4L, 7L, 4L, 5L, 3L, 5L, 5L, 5L, 4L, 7L, 6L, 5L,
2L, 4L, 5L, 3L, 2L, 7L, 5L, 5L, 5L, 3L, 6L, 5L, 5L, 2L, 6L, 5L,
5L, 7L, 5L, 5L, 4L, 5L, 2L, 6L, 6L, 6L, 7L, 5L, 5L, 6L, 5L, 6L,
5L, 6L, 1L, 5L, 6L, 6L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L,
7L, 5L, 5L, 4L, 6L, 5L, 5L, 3L, 5L, 2L, 5L, 3L, 6L, 6L, 5L, 4L,
5L, 2L, 5L, 6L, 5L, 6L, 5L, 5L, 2L, 5L, 4L, 3L, 6L, 7L, 5L, 6L,
1L, 4L, 6L, 4L, 6L, 3L, 2L, 2L, 6L, 5L, 3L, 6L, 4L, 5L, 4L, 5L,
4L, 6L, 4L, 5L, 5L, 5L, 5L, 6L, 1L, 5L)), row.names = c(NA, -300L
), class = c("tbl_df", "tbl", "data.frame"))
CodePudding user response:
Load libraries and group data
I'm not entirely sure what you are trying to group for your multivariate side of things, but I grouped your data by the "AD" variable and tried to identify outliers with their ratings that way:
# Load libraries:
library(tidyverse)
library(rstatix)
# Pivot data to get groups for df1:
df1pivot <- df1 %>%
pivot_longer(cols = everything(),
names_to = "AD",
values_to = "Rating")
Find Mahalanobis distance and its outliers
# Find mahalanobis distance for df1 and filter outliers:
df1pivot %>%
group_by(AD) %>%
mahalanobis_distance(Rating) %>%
filter(is.outlier==T)
Which gives us no multivariate outliers so far:
# A tibble: 0 x 3
# ... with 3 variables: Rating <int>, mahal.dist <dbl>, is.outlier <lgl>
Repeat for df2
# Same for df2 pivot:
df2pivot <- df2 %>%
pivot_longer(cols = everything(),
names_to = "AD",
values_to = "Rating")
# Find mahalanobis distance for df2 and filter outliers:
df2pivot %>%
group_by(AD) %>%
mahalanobis_distance(Rating) %>%
filter(is.outlier==T)
And as it was with df1, no outliers in df2:
# A tibble: 0 x 3
# ... with 3 variables: Rating <int>, mahal.dist <dbl>, is.outlier <lgl>
Edit
Based off your comments, here is a possible answer:
# Rename "good" and "bad" ratings of people and pivot:
df1pivot <- df1 %>%
rename_with(.cols = everything(),
.fn = ~str_c(., c(rep('_Bad', 3),
rep('_Good', 7)))) %>%
pivot_longer(cols = everything(),
names_to = c('Test', 'Test_Type'),
names_pattern = '(.*)_(.*)',
values_to = 'Score')
# Check Mahalanobis:
df1pivot %>%
group_by(Test_Type) %>%
mahalanobis_distance(Score) %>%
filter(is.outlier==T)
# Same for df2
df2pivot <- df2 %>%
rename_with(.cols = everything(),
.fn = ~str_c(., c(rep('_Bad', 3),
rep('_Good', 7)))) %>%
pivot_longer(cols = everything(),
names_to = c('Test', 'Test_Type'),
names_pattern = '(.*)_(.*)',
values_to = 'Score')
# Check df2 outliers:
df2pivot %>%
group_by(Test_Type) %>%
mahalanobis_distance(Score) %>%
filter(is.outlier==T)