I have a dataframe for which I have to create a new column based on values in the already existing columns. The catch is, I can't write CASE
statements, because here it checks for first WHEN
condition if it is not satisfied then it will go to next WHEN
. E.g. consider this dataframe:
- ----- -
|A|B |C|
- ----- -
|1|true |1|-----> Condition 1 and 2 is satisfied Here
|1|true |0|-----> Condition 1 is satisfied here
|1|false|1|
|2|true |1|
|2|true |0|
- ----- -
Consider this CASE
statement:
CASE WHEN A = 1 and B = 'true' then 'A'
WHEN A = 1 and B = 'true' and C=1 then 'B'
END
It gives me no row for value B.
Expected output:
- ----- - ----
|A|B |C|D |
- ----- - ----
|1|true |1|A |
|1|true |1|B |
|1|true |0|A |
|1|false|1|null|
|2|true |1|null|
|2|true |0|null|
- ----- - ----
I know I can derive this in 2 separate dataframes and then union them. But I am looking for more efficient solution.
CodePudding user response:
Creating the dataframe:
val df1 = Seq((1, true, 1), (1, true, 0), (1, false, 1), (2, true, 1), (2, true, 0)).toDF("A", "B", "C")
df1.show()
// --- ----- ---
// | A| B| C|
// --- ----- ---
// | 1| true| 1|
// | 1| true| 0|
// | 1|false| 1|
// | 2| true| 1|
// | 2| true| 0|
// --- ----- ---
The code:
val condition1 = ($"A" === 1) && ($"B" === true)
val condition2 = condition1 && ($"C" === 1)
val arr1 = array(when(condition1, "A"), when(condition2, "B"))
val arr2 = when(element_at(arr1, 2).isNull, slice(arr1, 1, 1)).otherwise(arr1)
val df2 = df.withColumn("D", explode(arr2))
df2.show()
// --- ----- --- ----
// | A| B| C| D|
// --- ----- --- ----
// | 1| true| 1| A|
// | 1| true| 1| B|
// | 1| true| 0| A|
// | 1|false| 1|null|
// | 2| true| 1|null|
// | 2| true| 0|null|
// --- ----- --- ----